497 research outputs found

    Proton radiography to improve proton radiotherapy: Simulation study at different proton beam energies

    Get PDF
    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a patient of typically 3-4\% and even up to 10\% in region containing bone~\cite{USchneider1995,USchneider1996,WSchneider2000,GCirrone2007,HPaganetti2012,TPlautz2014,GLandry2013,JSchuemann2014}. As a consequence, part of a tumor may receive no dose, or a very high dose can be delivered in healthy ti\-ssues and organs at risks~(e.g. brain stem)~\cite{ACKnopf2013}. A transmission radiograph of high-energy protons measuring proton stopping powers directly will allow to reduce these uncertainties, and thus improve the quality of treatment. The best way to obtain a sufficiently accurate radiograph is by tracking individual protons traversing the phantom (patient)~\cite{GCirrone2007,TPlautz2014,VSipala2013}. In our simulations we have used an ideal position sensitive detectors measuring a single proton before and after a phantom, while the residual energy of a proton was detected by a BaF2_{2} crystal. To obtain transmission radiographs, diffe\-rent phantom materials have been irradiated with a 3x3~cm2^{2} scattered proton beam, with various beam energies. The simulations were done using the Geant4 simulation package~\cite{SAgostinelli2003}. In this study we focus on the simulations of the energy loss radiographs for various proton beam energies that are clinically available in proton radiotherapy.Comment: 6 pages, 6 figures, Presented at Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, 7-12 June, 2015, Krak\'ow, Polan

    AGOR status report

    Get PDF
    The operations of the superconducting cyclotron AGOR over the past years will be reviewed. Reliability issues encountered after nearly 25 years of operation and mitigation measures to warrant reliable operation for the coming decade will be discussed. The research performed with AGOR has significantly shifted from fundamental physics to radiation biology and medical radiation physics, both in collaboration with the Groningen Proton Therapy Center, and radiation hardness studies. The radiation biology research will be substantially expanded in the coming years with a new beam line for image guided preclinical research. For this research new dose delivery modalities including scanning, spatial fractionation and very high dose rates are developed. In addition, a new program has been started on the production of exotic nuclei, for which a new superconducting solenoid fragment separator will be developed. For the radiation hardness testing a cocktail beam at 30 MeV/amu with several ion species up to Xe has been developed and is now routinely delivered for experiments. A cocktail at 15 MeV/amu up to Bi is under development

    An Algorithmic Framework for Labeling Network Maps

    Full text link
    Drawing network maps automatically comprises two challenging steps, namely laying out the map and placing non-overlapping labels. In this paper we tackle the problem of labeling an already existing network map considering the application of metro maps. We present a flexible and versatile labeling model. Despite its simplicity, we prove that it is NP-complete to label a single line of the network. For a restricted variant of that model, we then introduce an efficient algorithm that optimally labels a single line with respect to a given weighting function. Based on that algorithm, we present a general and sophisticated workflow for multiple metro lines, which is experimentally evaluated on real-world metro maps.Comment: Full version of COCOON 2015 pape

    Cosmetische rostrale neusreconstructie na plaveiselcelcarninoomresectie bij twee honden

    Get PDF
    Two male Golden retrievers, each one about ten years old, were presented with a visible mass in the nose, showing symptoms of sneezing and epistaxis. The histopathological examination of biopsies indicated that both dogs were affected by a squamous cell carcinoma. Further staging did not reveal any indications for metastases. Surgical removal of the tumor through a planectomy or nosectomy was proposed. Since the classical removal of the nose was cosmetically unacceptable for the owners of both dogs, a rostral nose reconstruction was opted for in both cases. As the tumor in the first dog was rather superficial, resection of the cartilaginous part of the nose (planectomy) turned out to be sufficient. In the second dog however, there was also evidence of bony involvement. Therefore, not only the nose but also the os incisiva was removed (nosectomy). In both cases, remission of the tumor was obtained after a 35 and 29 months follow-up, respectively, accompanied by an excellent cosmetic result

    ifCNV: A novel isolation-forest-based package to detect copy-number variations from various targeted NGS datasets

    Get PDF
    Copy-number variations (CNVs) are an essential component of genetic variation distributed across large parts of the human genome. CNV detection from next-generation sequencing data and artificial intelligence algorithms have progressed in recent years. However, only a few tools have taken advantage of machine-learning algorithms for CNV detection, and none propose using artificial intelligence to automatically detect probable CNV-positive samples. The most developed approach is to use a reference or normal dataset to compare with the samples of interest, and it is well known that selecting appropriate normal samples represents a challenging task that dramatically influences the precision of results in all CNV-detecting tools. With careful consideration of these issues, we propose here ifCNV, a new software based on isolation forests that creates its own reference, available in R and python with customizable parameters. ifCNV combines artificial intelligence using two isolation forests and a comprehensive scoring method to faithfully detect CNVs among various samples. It was validated using targeted next-generation sequencing (NGS) datasets from diverse origins (capture and amplicon, germline and somatic), and it exhibits high sensitivity, specificity, and accuracy. ifCNV is a publicly available open-source software (https://github.com/SimCab-CHU/ifCNV) that allows the detection of CNVs in many clinical situations

    Establishment of the New Particle Therapy Research Center (PARTREC) at UMCG Groningen

    Get PDF
    After 25 years of successful research in the nuclear and radiation physics domain, the KVI-CART research center in Groningen is upgraded and re-established as the PARticle Therapy REsearch Center (PARTREC). Using the superconducting cyclotron AGOR and being embedded within the University Medical Center Groningen, it operates in close collaboration with the Groningen Proton Therapy Center. PARTREC uniquely combines radiation physics, medical physics, biology and radiotherapy research with an R&D program to improve hadron therapy technology and advanced radiation therapy for cancer. A number of further upgrades, scheduled for completion in 2023, will establish a wide range of irradiation modalities, such as pencil beam scanning, shoot-through with high energy protons and SOBP for protons, helium and carbon ions. Delivery of spatial fractionation (GRID) and dose rates over 300 Gy/s (FLASH) are envisioned. In addition, PARTREC delivers a variety of ion beams and infrastructure for radiation hardness experiments conducted by scientific and commercial communities, and nuclear science research in collaboration with the Faculty of Science and Engineering of the University of Groningen

    Validation of a Patient Global Assessment for extent, severity and impact to define the severity strata for the Self Assessment Vitiligo Extent Score (SA-VES)

    Get PDF
    Background: The Self Assessment Vitiligo Extent Score (SA‐VES) is a validated, patient‐reported outcome measure to assess the body surface area affected with vitiligo. Information on how to translate the obtained score into extent, severity and impact strata (mild–moderate–severe) is still lacking. Stratification is helpful to define inclusion criteria for trials, enables comparison and pooling of trial results and can be used for epidemiological research. Objectives: The aim was to develop extent, severity and impact strata for the SA‐VES based on validated anchor‐based questions. Methods: In total, 315 patients with vitiligo (non‐segmental; age ≥ 16) recruited at the Ghent University Hospital (Belgium) completed a questionnaire that was conducted in cooperation with the Dutch Society for vitiligo patients to ensure content validity. First three anchor questions included in the questionnaire [Patient Global Assessment (PtGA) for vitiligo extent, severity and impact] were assessed for content validity, construct validity and intrarater reliability. Subsequently, the PtGAs were used to stratify the SA‐VES based on ROC analysis. Results: For all PtGAs (PtGA extent, PtGA severity, PtGA impact), at least 75% of hypotheses evaluated for construct validity were confirmed. Intrarater reliability of all PtGAs was good to excellent (ICCs PtGA extent: 0.623; PtGA severity: 0.828; PtGA impact: 0.851). The optimal cut‐off values of the SA‐VES between the three global categories (mild/limited – moderate – severe/extensive) were 1.05% and 6.45% based on PtGA extent, 2.07% and 4.8% based on PtGA severity and 2% and 3.35% based on PtGA impact. Conclusion: This study provides the first guide for the interpretation of the numerical output obtained by the SA‐VES (vitiligo extent) and enables the translation into a global vitiligo grading for extent, severity and impact. As patients’ interpretation of vitiligo extent, severity and impact may vary amongst patients worldwide, future international studies will be required

    Corrigendum: Short-lived positron emitters in beam-on PET imaging during proton therapy (2015 Phys. Med. Biol. 60 8923)

    Get PDF
    Because of strong indications of multiple counting by the multi-channel scaler (MCS) during most of the experiments described in Dendooven et al (2015 Phys. Med. Biol. 60 8923–47), the production of short-lived positron emitters in the stopping of 55 MeV protons in water, carbon, phosphorus and calcium was remeasured. The new results are reported here. With proper single counting of the MCS, the new production rates are 1.1 to 2.9 times smaller than reported in Dendooven et al (2015 Phys. Med. Biol. 60 8923–47). The omission of the conversion from MCS time bin to time unit in the previous data analysis was corrected, leading to an increase of the production rate by a factor of 2.5 or 10 for some nuclides. The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: 12N (T 1/2  =  11 ms) on carbon (5.3% of 11C), 29P (T 1/2  =  4.1 s) on phosphorus (23% of 30P) and 38mK (T 1/2  =  0.92 s) on calcium (173% of 38gK). The number of decays integrated from the start of an irradiation as a function of time during the irradiation of PMMA and 4 tissue materials has been determined. For (carbon-rich) adipose tissue, 12N dominates up to 70 s. On bone tissue, 38mK dominates the beam-on PET counts from 0.2–0.7 s until about 80–110 s. Considering nuclides created on phosphorus and calcium, the short-lived ones provide 8 times more decays than the long-lived ones during a 70 s irradiation. Bone tissue will thus be much better visible in beam-on PET compared to PET imaging after an irradiation. From the estimated number of 12N PET counts, we conclude that, for any tissue, except carbon-poor ones, 12N PET imaging potentially provides equal quality proton range information as prompt gamma imaging with an optimized knife-edge slit camera
    corecore