2,470 research outputs found
Fluctuation-driven insulator-to-metal transition in an external magnetic field
We consider a model for a metal-insulator transition of correlated electrons
in an external magnetic field. We find a broad region in interaction and
magnetic field where metallic and insulating (fully magnetized) solutions
coexist and the system undergoes a first-order metal-insulator transition. A
global instability of the magnetically saturated solution precedes the local
ones and is caused by collective fluctuations due to poles in electron-hole
vertex functions.Comment: REVTeX 4 pages, 3 PS figure
Orbital-selective Mott transitions in the anisotropic two-band Hubbard model at finite temperatures
The anisotropic degenerate two-orbital Hubbard model is studied within
dynamical mean-field theory at low temperatures. High-precision calculations on
the basis of a refined quantum Monte Carlo (QMC) method reveal that two
distinct orbital-selective Mott transitions occur for a bandwidth ratio of 2
even in the absence of spin-flip contributions to the Hund exchange. The second
transition -- not seen in earlier studies using QMC, iterative perturbation
theory, and exact diagonalization -- is clearly exposed in a low-frequency
analysis of the self-energy and in local spectra.Comment: 4 pages, 5 figure
Kinetic Anomalies in Addition-Aggregation Processes
We investigate irreversible aggregation in which monomer-monomer,
monomer-cluster, and cluster-cluster reactions occur with constant but distinct
rates K_{MM}, K_{MC}, and K_{CC}, respectively. The dynamics crucially depends
on the ratio gamma=K_{CC}/K_{MC} and secondarily on epsilon=K_{MM}/K_{MC}. For
epsilon=0 and gamma<2, there is conventional scaling in the long-time limit,
with a single mass scale that grows linearly in time. For gamma >= 2, there is
unusual behavior in which the concentration of clusters of mass k, c_k decays
as a stretched exponential in time within a boundary layer k<k* propto
t^{1-2/gamma} (k* propto ln t for gamma=2), while c_k propto t^{-2} in the bulk
region k>k*. When epsilon>0, analogous behaviors emerge for gamma<2 and gamma
>= 2.Comment: 6 pages, 2 column revtex4 format, for submission to J. Phys.
Symmetry breaking in the Hubbard model at weak coupling
The phase diagram of the Hubbard model is studied at weak coupling in two and
three spatial dimensions. It is shown that the Neel temperature and the order
parameter in d=3 are smaller than the Hartree-Fock predictions by a factor of
q=0.2599. For d=2 we show that the self-consistent (sc) perturbation series
bears no relevance to the behavior of the exact solution of the Hubbard model
in the symmetry-broken phase. We also investigate an anisotropic model and show
that the coupling between planes is essential for the validity of
mean-field-type order parameters
Metal--Insulator Transitions in the Falicov--Kimball Model with Disorder
The ground state phase diagrams of the Falicov--Kimball model with local
disorder is derived within the dynamical mean--field theory and using the
geometrically averaged (''typical'') local density of states. Correlated metal,
Mott insulator and Anderson insulator phases are identified. The
metal--insulator transitions are found to be continuous. The interaction and
disorder compete with each other stabilizing the metallic phase against
occurring one of the insulators. The Mott and Anderson insulators are found to
be continuously connected.Comment: 6 pages, 7 figure
Magnetic properties of the three-dimensional Hubbard model at half filling
We study the magnetic properties of the 3d Hubbard model at half-filling in
the TPSC formalism, previously developed for the 2d model. We focus on the
N\'eel transition approached from the disordered side and on the paramagnetic
phase. We find a very good quantitative agreement with Dynamical Mean-Field
results for the isotropic 3d model. Calculations on finite size lattices also
provide satisfactory comparisons with Monte Carlo results up to the
intermediate coupling regime. We point out a qualitative difference between the
isotropic 3d case, and the 2d or anisotropic 3d cases for the double occupation
factor. Even for this local correlation function, 2d or anisotropic 3d cases
are out of reach of DMF: this comes from the inability of DMF to account for
antiferromagnetic fluctuations, which are crucial.Comment: RevTex, 9 pages +10 figure
Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model
The simplest statistical-mechanical model of crystalline formation (or alloy
formation) that includes electronic degrees of freedom is solved exactly in the
limit of large spatial dimensions and infinite interaction strength. The
solutions contain both second-order phase transitions and first-order phase
transitions (that involve phase-separation or segregation) which are likely to
illustrate the basic physics behind the static charge-stripe ordering in
cuprate systems. In addition, we find the spinodal-decomposition temperature
satisfies an approximate scaling law.Comment: 19 pages and 10 figure
Superior localisation and imaging of radiolabelled monoclonal antibody E48 F(ab')2 fragment in xenografts of human squamous cell carcinoma of the head and neck and of the vulva as compared to monoclonal antibody E48 IgG.
Monoclonal antibody (MAb) E48 and its F(ab')2 fragment, radiolabelled with 131I, were tested for tumour localisation and imaging in nude mice bearing a squamous cell carcinoma xenograft line derived from a head and neck carcinoma (HNX-HN) or from a vulva carcinoma (VX-A431). MAb IgG or F(ab')2 fragments were injected in parallel and at day 1, 2, 3 and 6 or 7, mice were either scanned with a gamma camera or dissected for determination of isotope biodistribution. In HNX-HN bearing mice, E48 IgG as well as F(ab')2 showed highly specific localisation in tumour tissue. The mean tumour uptake (n = 4) expressed as the percentage of the injected dose per gram of tumour tissue (percentage ID/g) of IgG was 11.9% at day 1 and increased to 14.6% at day 6 whereas percentage ID/g of F(ab')2 was 7.2% at day 1 and decreased during subsequent days. Tumour to blood ratios (T/B) at day 1 were 1.2 for IgG and 13.6 for F(ab')2 and reached a maximum at day 6 with values of 6.4 and 54.2 respectively. In VX-A431 bearing mice, only E48 F(ab')2 showed preferential localisation in tumour tissue. At day 1, Percentage ID/g of IgG was 3.7 and T/B was 0.3, while percentage ID/g of F(ab')2 was 2.4 and T/B was 3.2. Percentage ID/g decreased after day 1 while T/B increased. In these experiments no preferential localisation of either isotype matched 125I-labelled control IgG or F(ab')2 was observed. In F(ab')2 injected HNX-HN bearing mice as well as VX-A431 bearing mice, tumours could be visualised at day 1 and 2 without any appreciable background activity. With MAb IgG this was also possible in HNX-HN bearing mice (but not in VX-A431 bearing mice) but only at day 3 and 6. These findings suggest that the superior tumour to non-tumour ratios render the E48 F(ab')2 fragment more qualified for specific targeting of radioisotopes to tumour xenografts in this experimental setting
Radioimmunotherapy of human head and neck squamous cell carcinoma xenografts with 131I-labelled monoclonal antibody E48 IgG.
Monoclonal antibody (MAb) E48 reacts with a 22 kD antigen exclusively expressed in squamous and transitional epithelia and their neoplastic counterparts. Radiolabelled with 99mTc, MAb E48 is capable of targeting metastatic and recurrent disease in patients with head and neck cancer. In this study, the capacity of 131I-labelled MAb E48 to eradicate xenografts of human squamous cell carcinoma of the head and neck (HNSCC) in nude mice was examined. Experimental groups received a single i.v. bolus injection of 400 microCi MAb E48 IgG (number of mice (n = 6, number of tumours (t) = 9) or 800 microCi MAb E48 IgG (n) = 5,t = 7), whereas control groups received either diluent (n = 3,t = 5), unlabelled MAb E48 IgG (n = 4,t = 5) or 800 microCi 131I-labelled isotype-matched control MAb (n = 6,t = 9). A 4.1-fold increase in the median tumour volume doubling time and regression of two out of ten tumours (20%) was observed in mice treated with 400 microCi. In mice treated with 800 microCi. In mice treated with 800 microCi, two out of seven tumours (29%) showed complete remission without regrowth during follow-up (greater than 3 months). Median tumour volume doubling time in the remaining five tumours was increased 7.8-fold. No antitumour effects were observed in mice injected with diluent, unlabelled MAb E48 or 131I-labelled control MAb. In the same xenograft model, chemotherapy with doxorubicin, 5-fluorouracil, cisplatin, bleomycin, methotrexate or 2',2'-difluorodeoxycytidine yielded a less profound effect on tumour volume doubling time. Increases in tumour volume doubling time with these chemotherapeutic agents were 4, 2.2, 2.1, 1.7, 0, and 2.6 respectively. Moreover, no cures were observed with any of these chemotherapeutic agents. From the tissue distribution of 800 microCi MAb E48, the absorbed cumulative radiation doses of tumour and various organs were calculated using the trapezoid integration method for the area under the curve. To tumour xenografts, 12,170 cGy was delivered, blood received 2,984 cGy, whereas in every other tissue the accumulated dose was less than 6% of the dose delivered to tumour. These data, describing the first radiolabelled MAb with therapeutic efficacy against HNSCC, suggest radioimmunotherapy with MAb E48 to be a potential therapeutic modality for the treatment of head and neck cancer
Raman scattering through a metal-insulator transition
The exact solution for nonresonant A1g and B1g Raman scattering is presented
for the simplest model that has a correlated metal-insulator transition--the
Falicov-Kimball model, by employing dynamical mean field theory. In the general
case, the A1g response includes nonresonant, resonant, and mixed contributions,
the B1g response includes nonresonant and resonant contributions (we prove the
Shastry-Shraiman relation for the nonresonant B1g response) while the B2g
response is purely resonant. Three main features are seen in the nonresonant
B1g channel: (i) the rapid appearance of low-energy spectral weight at the
expense of higher-energy weight; (b) the frequency range for this low-energy
spectral weight is much larger than the onset temperature, where the response
first appears; and (iii) the occurrence of an isosbestic point, which is a
characteristic frequency where the Raman response is independent of temperature
for low temperatures. Vertex corrections renormalize away all of these
anomalous features in the nonresonant A1g channel. The calculated results
compare favorably to the Raman response of a number of correlated systems on
the insulating side of the quantum-critical point (ranging from Kondo
insulators, to mixed-valence materials, to underdoped high-temperature
superconductors). We also show why the nonresonant B1g Raman response is
``universal'' on the insulating side of the metal-insulator transition.Comment: 12 pages, 11 figures, ReVTe
- …