1,250 research outputs found
Exploring the Levinthal limit in protein folding
According to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal's hypothesis that protein folding is a kinetic non-equilibrium process.FCT - Foundation for Science and Technology, Portugal [UID/Multi/04326/2013]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientia co e Tecnologico (CNPq
Space-time evolution of electron cascades in diamond
Here we describe model calculations to follow the spatio-temporal evolution
of secondary electron cascades in diamond. The band structure of the insulator
has been explicitly incorporated into the calculations as it affects
ionizations from the valence band. A Monte-Carlo model was constructed to
describe the path of electrons following the impact of a single electron of
energy E 250 eV. The results show the evolution of the secondary electron
cascades in terms of the number of electrons liberated, the spatial
distribution of these electrons, and the energy distribution among the
electrons as a function of time. The predicted ionization rates (5-13 electrons
in 100 fs) lie within the limits given by experiments and phenomenological
models. Calculation of the local electron density and the corresponding Debye
length shows that the latter is systematically larger than the radius of the
electron cloud. This means that the electron gas generated does not represent a
plasma in a single impact cascade triggered by an electron of E 250 eV energy.
This is important as it justifies the independent-electron approximation used
in the model. At 1 fs, the (average) spatial distribution of secondary
electrons is anisotropic with the electron cloud elongated in the direction of
the primary impact. The maximal radius of the cascade is about 50 A at this
time. As the system cools, energy is distributed more equally, and the spatial
distribution of the electron cloud becomes isotropic. At 90 fs maximal radius
is about 150 A. The Monte-Carlo model described here could be adopted for the
investigation of radiation damage in other insulators and has implications for
planned experiments with intense femtosecond X-ray sources.Comment: 26 pages, latex, 13 figure
Infective endocarditis in the Netherlands:current epidemiological profile and mortality An analysis based on partial ESC EORP collected data
Introduction: Infective endocarditis (IE) is associated with a high in-hospital and long term mortality. Although progress has been made in diagnostic approach and management of IE, morbidity and mortality of IE remain high. In the latest European guidelines, the importance of the multi-modality imaging in diagnosis and follow up of IE is emphasized. Aim: The aim was to provide information regarding mortality and adverse events of IE, to determine IE characteristics and to assess current use of imaging in the diagnostic workup of IE. Methods: This is a prospective observational cohort study. We used data from the EURO-ENDO registry. Seven hospitals in the Netherlands have participated and included patients with IE between April 2016 and April 2018. Results: A total of 139 IE patients were included. Prosthetic valve endocarditis constituted 32.4% of the cases, cardiac device related IE 7.2% and aortic root prosthesis IE 3.6%. In-hospital mortality was 14.4% (20 patients) and one-year mortality was 21.6% (30 patients). The incidence of embolic events under treatment was 16.5%, while congestive heart failure or cardiogenic shock occurred in 15.1% of the patients. Transthoracic and transoesophageal echocardiography were performed most frequently (97.8%; 81.3%) and within 3 days after IE suspicion, followed by 18F‑fluorodeoxyglucose positron emission tomography/computed tomography (45.3%) within 6 days and multi-slice computed tomography (42.4%) within 7 days. Conclusion: We observed a high percentage of prosthetic valve endocarditis, rapid and extensive use of imaging and a relatively low in-hospital and one-year mortality of IE in the Netherlands. Limitations include possible selection bias
Reexamination of the species assignment of Diacavolinia pteropods using DNA barcoding
© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e53889, doi:10.1371/journal.pone.0053889.Thecosome pteropods (Mollusca, Gastropoda) are an ecologically important, diverse, and ubiquitous group of holoplanktonic animals that are the focus of intense research interest due to their external aragonite shell and vulnerability to ocean acidification. Characterizing the response of these animals to low pH and other environmental stressors has been hampered by continued uncertainty in their taxonomic identification. An example of this confusion in species assignment is found in the genus Diacavolinia. All members of this genus were originally indentified as a single species, Cavolinia longirostris, but over the past fifty years the taxonomy has been revisited multiple times; currently the genus comprises 22 different species. This study examines five species of Diacavolinia, including four sampled in the Northeast Atlantic (78 individuals) and one from the Eastern tropical North Pacific (15 individuals). Diacavolina were identified to species based on morphological characteristics according to the current taxonomy, photographed, and then used to determine the sequence of the “DNA barcoding” region of the cytochrome c oxidase subunit I (COI). Specimens from the Atlantic, despite distinct differences in shell morphology, showed polyphyly and a genetic divergence of <3% (K2P distance) whereas the Pacific and Atlantic samples were more distant (~19%). Comparisons of Diacavolinia spp. with other Cavolinia spp. reveal larger distances (~24%). These results indicate that specimens from the Atlantic comprise a single monophyletic species and suggest possible species-level divergence between Atlantic and Pacific populations. The findings support the maintenance of Diacavolinia as a separate genus, yet emphasize the inadequacy of our current taxonomic understanding of pteropods. They highlight the need for accurate species identifications to support estimates of biodiversity, range extent and natural exposure of these planktonic calcifiers to environmental variability; furthermore, the apparent variation of the pteropods shell may have implications for our understanding of the species’ sensitivity to ocean acidification.This material is based upon work supported by the National Science Foundation under Grant Number OCE-0928801. AEM was funded through the WHOI Postdoctoral Scholarship. Support to LBB was provided by the College of Liberal Arts & Sciences, University of Connecticut; and by the Census of Marine Life/Alfred P. Sloan Foundation
N-myristoylated proteins, key components in intracellular signal transduction systems enabling rapid and flexible cell responses
N-myristoylation, one of the co- or post-translational modifications of proteins, has so far been regarded as necessary for anchoring of proteins to membranes. Recently, we have revealed that Nα-myristoylation of several brain proteins unambiguously regulates certain protein–protein interactions that may affect signaling pathways in brain. Comparison of the amino acid sequences of myristoylated proteins including those in other organs suggests that this regulation is involved in signaling pathways not only in brain but also in other organs. Thus, it has been shown that myristoylated proteins in cells regulate the signal transduction between membranes and cytoplasmic fractions. An algorithm we have developed to identify myristoylated proteins in cells predicts the presence of hundreds of myristoylated proteins. Interestingly, a large portion of the myristoylated proteins thought to take part in signal transduction between membranes and cytoplasmic fractions are included in the predicted myristoylated proteins. If the proteins functionally regulated by myristoylation, a posttranslational protein modification, were understood as cross-talk points within the intracellular signal transduction system, known signaling pathways could thus be linked to each other, and a novel map of this intracellular network could be constructed. On the basis of our recent results, this review will highlight the multifunctional aspects of protein N-myristoylation in brain
Virus Capsid Dissolution Studied by Microsecond Molecular Dynamics Simulations
Dissolution of many plant viruses is thought to start with swelling of the capsid caused by calcium removal following infection, but no high-resolution structures of swollen capsids exist. Here we have used microsecond all-atom molecular simulations to describe the dynamics of the capsid of satellite tobacco necrosis virus with and without the 92 structural calcium ions. The capsid expanded 2.5% upon removal of the calcium, in good agreement with experimental estimates. The water permeability of the native capsid was similar to that of a phospholipid membrane, but the permeability increased 10-fold after removing the calcium, predominantly between the 2-fold and 3-fold related subunits. The two calcium binding sites close to the icosahedral 3-fold symmetry axis were pivotal in the expansion and capsid-opening process, while the binding site on the 5-fold axis changed little structurally. These findings suggest that the dissociation of the capsid is initiated at the 3-fold axis
Protein-Protein Interactions in Crystals of the Human Receptor-Type Protein Tyrosine Phosphatase ICA512 Ectodomain
ICA512 (or IA-2) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Initially, it was identified as one of the main antigens of autoimmune diabetes. Later, it was found that during insulin secretion, the cytoplasmic domain of ICA512 is cleaved and relocated to the nucleus, where it stimulates the transcription of the insulin gene. The role of the other parts of the receptor in insulin secretion is yet to be unveiled. The structures of the intracellular pseudocatalytic and mature extracellular domains are known, but the transmembrane domain and several intracellular and extracellular parts of the receptor are poorly characterized. Moreover the overall structure of the receptor remains to be established. We started to address this issue studying by X-ray crystallography the structure of the mature ectodomain of ICA512 (ME ICA512) and variants thereof. The variants and crystallization conditions were chosen with the purpose of exploring putative association interfaces, metal binding sites and all other structural details that might help, in subsequent works, to build a model of the entire receptor. Several structural features were clarified and three main different association modes of ME ICA512 were identified. The results provide essential pieces of information for the design of new experiments aimed to assess the structure in vivo
Heart-type Fatty acid-binding protein in Acute Myocardial infarction Evaluation (FAME): Background and design of a diagnostic study in primary care
<p>Abstract</p> <p>Background</p> <p>Currently used biomarkers for cardiac ischemia are elevated in blood plasma after a delay of several hours and therefore unable to detect acute coronary syndrome (ACS) in a very early stage. General practitioners (GPs), however, are often confronted with patients suspected of ACS within hours after onset of complaints. This ongoing study aims to evaluate the added diagnostic value beyond clinical assessment for a rapid bedside test for heart-type fatty-acid binding protein (H-FABP), a biomarker that is detectable as soon as one hour after onset of ischemia.</p> <p>Methods</p> <p>Participating GPs perform a blinded H-FABP rapid bedside test (Cardiodetect<sup>®</sup>) in patients with symptoms suggestive of ACS such as chest pain or discomfort at rest. All patients, whether referred to hospital or not, undergo electrocardiography (ECG) and venapunction for a plasma troponin test within 12–36 hours after onset of complaints. A final diagnosis will be established by an expert panel consisting of two cardiologists and one general practitioner (blinded to the H-FABP test result), using all available patient information, also including signs and symptoms. The added diagnostic value of the H-FABP test beyond history taking and physical examination will be determined with receiver operating characteristic curves derived from multivariate regression analysis.</p> <p>Conclusion</p> <p>Reasons for presenting the design of our study include the prevention of publication bias and unacknowledged alterations in the study aim, design or data-analysis. To our knowledge this study is the first to assess the diagnostic value of H-FABP <it>outside </it>a hospital-setting. Several previous hospital-based studies showed the potential value of H-FABP in diagnosing ACS. Up to now however it is unclear whether these results are equally promising when the test is used in primary care. The first results are expected in the end of 2008.</p
X-ray Diffraction and Molecular Dynamics Study of Medium-range Order in Ambient and Hot Water
We have developed x-ray diffraction measurements with high energy-resolution
and accuracy to study water structure at three different temperatures (7, 25
and 66 C) under normal pressure. Using a spherically curved Ge crystal an
energy resolution better than 15 eV has been achieved which eliminates
influence from Compton scattering. The high quality of the data allows a
precise oxygen-oxygen pair correlation function (PCF) to be directly derived
from the Fourier transform of the experimental data resolving shell structure
out to ~12 {\AA}, i.e. 5 hydration shells. Large-scale molecular dynamics (MD)
simulations using the TIP4P/2005 force-field reproduce excellently the
experimental shell-structure in the range 4-12 {\AA} although less agreement is
seen for the first peak in the PCF. The Local Structure Index [J. Chem. Phys.
104, 7671 (1996)] identifies a tetrahedral minority giving the
intermediate-range oscillations in the PCF and a disordered majority providing
a more featureless background in this range. The current study supports the
proposal that the structure of liquid water, even at high temperatures, can be
described in terms of a two-state fluctuation model involving local structures
related to the high-density and low-density forms of liquid water postulated in
the liquid-liquid phase transition hypothesis.Comment: Submitted to Phys. Chem. Chem. Phy
- …