53 research outputs found

    Bringing Back Color: Retouching Faded Furniture With Colored Light

    Get PDF
    In this article we summarize research conducted over the past 15 years aimed at understanding the original colors used in stained furniture. It is a synthesis of research, part of which is published, but this article also contains data from internal research reports. We present the results of chemical analysis and the outcome of reconstructions made based on historical recipes and degradation research. We used these findings to retouch furniture with colored light, using beamers controlled by computers, mapping software, and photogrammetry

    Characterization of a liquid-core waveguide cell for studying the chemistry of light-induced degradation

    Get PDF
    Many organic compounds undergo changes under the influence of light. This might be beneficial in, for example, water purification, but undesirable when cultural-heritage objects fade or when food ingredients (e.g., vitamins) degrade. It is often challenging to establish a strong link between photodegradation products and their parent molecules due to the complexity of the sample. To allow effective study of light-induced degradation (LID), a low-volume exposure cell was created in which solutes are efficiently illuminated (especially at low concentrations) while simultaneously analysed by absorbance spectroscopy. The new LID cell encompasses a gas-permeable liquid-core waveguide (LCW) connected to a spectrograph allowing collection of spectral data in real-time. The aim of the current study was to evaluate the overall performance of the LID cell by assessing its transmission characteristics, the absolute photon flux achieved in the LCW, and its capacity to study solute degradation in presence of oxygen. The potential of the LID set-up for light-exposure studies was successfully demonstrated by monitoring the degradation of the dyes eosin Y and crystal violet

    Incorporating a liquid-core-waveguide cell in recycling liquid chromatography for detailed studies of photodegradation reactions

    Get PDF
    In this work, a microfluidic photoreactor was embedded in a recycling liquid-chromatography system. Mixtures were separated on an analytical column and compounds of interest were subsequently introduced into the light-reactor cell. After degradation, the content of the light-reactor cell was reinjected onto the same column to separate the parent compound from its degradation products. A separated degradation product could be re-introduced into the photoreactor and irradiated again. The next generation of degradation products could again be separated on the same analytical column. This recycling procedure proved an excellent tool to elucidate degradation pathways. This was demonstrated using riboflavin, better known as vitamin B2. By degrading it in the first cycle, degradation products were isolated and subjected to a second degradation in the light-reactor cell. This allows pinpointing secondary products and connect these with primary degradation products. Compared to previous work, this configuration is simpler, cheaper, and more user-friendly, while offering the unique possibility to easily connect degradation products to the initial compounds in a mixture.</p

    Comparing different light-degradation approaches for the degradation of crystal violet and eosin Y

    Get PDF
    Organic colourants have important applications in many fields. Their photostability is an important characteristic. Several methods to study photodegradation were compared in this work. Eosin Y (C.I. Generic name: Acid Red 87, EY) and crystal violet (C.I. Generic Name: Basic Violet 3, CV) were used as test compounds, both in solution and dyed on silk. Commonly applied methods were included, viz. Xenotest, Microfading-Tester, and light-box (Spectrolinker) experiments. A novel method was based on a liquid-core-waveguide (LCW) cell. After photodegradation on textile, extraction was performed using dimethyl sulfoxide (DMSO). The degraded solutions and extracts were analysed with liquid chromatography combined with diode-array detection and mass spectrometry. The degradation products were compared between techniques. Degradation in the LCW cell progressed much faster than in standard tests (Xenotest and Spectrolinker) and could be performed online, without a need for extraction or sample transfer. The degradation of CV in the LCW was comparable to its degradation in standard tests. For EY, there was a clear difference in degradation mechanisms between in-solution and on-textile samples. This could be due to the matrix or to incomplete extraction. Because the light sources used in the different experiments differed in energy and spectral emission, the results could not be quantitatively compared. However, the degradation products formed were shown to be independent of the light source. Therefore, the LCW is an attractive method for rapid and efficient studies into the chemistry of photodegradation
    corecore