64 research outputs found

    Provider Knowledge, Attitudes, and Practices regarding Obstetric and Postsurgical Gynecologic Infections Due to Group A Streptococcus and Other Infectious Agents

    Get PDF
    Background. Knowledge, attitudes, and practices of obstetricians and gynecologists regarding the Centers for Disease Control and Prevention (CDC) recommendations for prevention of healthcare-associated group A streptococcal (GAS) infections as well as general management of pregnancy-related and postpartum infections are unknown. Methods. Questionnaires were sent to 1300 members of the American College of Obstetricians and Gynecologists. Results. Overall, 53% of providers responded. Postpartum and postsurgical infections occurred in 3% and 7% of patients, respectively. Only 14% of clinicians routinely obtain diagnostic specimens for postpartum infections; providers collecting specimens determined the microbial etiology in 28%. Microbiologic diagnoses were confirmed in 20% of postsurgical cases. Approximately 13% and 15% of postpartum and postsurgical infections for which diagnoses were confirmed were attributed to GAS, respectively. Over 70% of clinicians were unaware of CDC recommendations. Conclusions. Postpartum and postsurgical infections are common. Providing empiric treatment without attaining diagnostic cultures represents a missed opportunity for potential prevention of diseases such as severe GAS infections

    Standardization of Epidemiological Surveillance of Group A Streptococcal Impetigo

    Get PDF
    Impetigo is a highly contagious bacterial infection of the superficial layer of skin. Impetigo is caused by group A Streptococcus (Strep A) and Staphylococcus aureus, alone or in combination, with the former predominating in many tropical climates. Strep A impetigo occurs mainly in early childhood, and the burden varies worldwide. It is an acute, self-limited disease, but many children experience frequent recurrences that make it a chronic illness in some endemic settings. We present a standardized surveillance protocol including case definitions for impetigo including both active (purulent, crusted) and resolving (flat, dry) phases and discuss the current tests used to detect Strep A among persons with impetigo. Case classifications that can be applied are detailed, including differentiating between incident (new) and prevalent (existing) cases of Strep A impetigo. The type of surveillance methodology depends on the burden of impetigo in the community. Active surveillance and laboratory confirmation is the preferred method for case detection, particularly in endemic settings. Participant eligibility, surveillance population and additional considerations for surveillance of impetigo, including examination of lesions, use of photographs to document lesions, and staff training requirements (including cultural awareness), are addressed. Finally, the core elements of case report forms for impetigo are presented and guidance for recording the course and severity of impetigo provided

    Putting surveillance data into context: The role of health care utilization surveys in understanding population burden of pneumonia in developing countries

    Get PDF
    AbstractBackgroundSurveillance is essential to estimating the global burden of pneumonia, yet differences in surveillance methodology and health care-seeking behaviors limit inter-country comparisons.MethodsResults were compared from community surveys measuring health care-seeking for pneumonia defined as: (1) cough and difficulty breathing for ⩾2days; or, (2) provider-diagnosed pneumonia. Surveys were conducted in six sites in Guatemala, Kenya and Thailand; these sites also conduct, active, hospital- and population-based disease surveillance for pneumonia.ResultsFrequency of self-reported pneumonia during the preceding year ranged from 1.1% (Thailand) to 6.3% (Guatemala) and was highest in children aged <5years and in urban sites. The proportion of persons with pneumonia who sought hospital-based medical services ranged from 12% (Guatemala, Kenya) to 80% (Thailand) and was highest in children <5years of age. Hospitals and private provider offices were the most common places where persons with pneumonia sought health care. The most commonly cited reasons for not seeking health care were: (a) mild illness; (b) already recovering; and (3) cost of treatment.ConclusionsHealth care-seeking patterns varied widely across countries. Using results from standardized health care utilization surveys to adjust facility-based surveillance estimates of pneumonia allows for more accurate and comparable estimates

    Early Identification and Prevention of the Spread of Ebola - United States

    Get PDF
    In response to the 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa, CDC prepared for the potential introduction of Ebola into the United States. The immediate goals were to rapidly identify and isolate any cases of Ebola, prevent transmission, and promote timely treatment of affected patients. CDC\u27s technical expertise and the collaboration of multiple partners in state, local, and municipal public health departments; health care facilities; emergency medical services; and U.S. government agencies were essential to the domestic preparedness and response to the Ebola epidemic and relied on longstanding partnerships. CDC established a comprehensive response that included two new strategies: 1) active monitoring of travelers arriving from countries affected by Ebola and other persons at risk for Ebola and 2) a tiered system of hospital facility preparedness that enabled prioritization of training. CDC rapidly deployed a diagnostic assay for Ebola virus (EBOV) to public health laboratories. Guidance was developed to assist in evaluation of patients possibly infected with EBOV, for appropriate infection control, to support emergency responders, and for handling of infectious waste. CDC rapid response teams were formed to provide assistance within 24 hours to a health care facility managing a patient with Ebola. As a result of the collaborations to rapidly identify, isolate, and manage Ebola patients and the extensive preparations to prevent spread of EBOV, the United States is now better prepared to address the next global infectious disease threat.The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html)

    Aggregated Antibiograms and Monitoring of Drug-Resistant Streptococcus pneumoniae

    Get PDF
    Community-specific antimicrobial susceptibility data may help monitor trends among drug-resistant Streptococcus pneumoniae and guide empiric therapy. Because active, population-based surveillance for invasive pneumococcal disease is accurate but resource intensive, we compared the proportion of penicillin-nonsusceptible isolates obtained from existing antibiograms, a less expensive system, to that obtained from 1 year of active surveillance for Georgia, Tennessee, California, Minnesota, Oregon, Maryland, Connecticut, and New York. For all sites, proportions of penicillin-nonsusceptible isolates from antibiograms were within 10 percentage points (median 3.65) of those from invasive-only isolates obtained through active surveillance. Only 23% of antibiograms distinguished between isolates intermediate and resistant to penicillin; 63% and 57% included susceptibility results for erythromycin and extended-spectrum cephalosporins, respectively. Aggregating existing hospital antibiograms is a simple and relatively accurate way to estimate local prevalence of penicillin-nonsusceptible pneumococcus; however, antibiograms offer limited data on isolates with intermediate and high-level penicillin resistance and isolates resistant to other agents

    Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD(+)-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide.Knut and Alice Wallenberg Foundation Swedish Research Council Houston Methodist Hospital Fondren Foundatio
    corecore