147 research outputs found

    Open source software for semi-automated histomorphometry of bone resorption and formation parameters

    Get PDF
    Micro-CT analysis has become the standard method for assessing bone volume and architecture in small animals. However, micro-CT does not allow the assessment of bone turnover parameters such as bone formation rate and osteoclast (OC) number and surface. For these crucial variables histomorphometric analysis is still an essential technique. Histomorphometry however, is time consuming and, especially in mouse bones, OCs can be difficult to detect. The main purpose of this study was to develop and validate a relatively easy and rapid method to measure static and dynamic bone histomorphometry parameters. Here we present the adaptation of established staining protocols and three novel open source image analysis packages: TrapHisto, OsteoidHisto and CalceinHisto that allow rapid, semi-automated analysis of histomorphometric bone resorption, osteoid, and calcein double labelling parameters respectively. These three programs are based on ImageJ, but use a relatively simple user interface that hides the underlying complexity of the image analysis

    The IĸB protein BCL3 controls osteogenesis and bone health.

    Get PDF
    OBJECTIVE: IĸB protein B-cell lymphoma 3-encoded protein (BCL3) is a regulator of the NF-κB family of transcription factors. NF-κB signalling fundamentally influences the fate of bone-forming osteoblasts and bone-resorbing osteoclasts, but the role of BCL3 in bone biology has not been investigated. The objective of this study was to evaluate BCL3 in skeletal development, maintenance and osteoarthritic pathology. METHODS: To assess the contribution of BCL3 to skeletal homeostasis, neonatal mice (n = 6-14) lacking BCL3 (Bcl3-/- ) and WT controls were characterised for bone phenotype and density. To reveal the contribution to bone phenotype by the osteoblast compartment in Bcl3-/- mice, transcriptomic analysis of early osteogenic differentiation and cellular function (n = 3-7) were assessed. Osteoclast differentiation and function in Bcl3-/- mice (n = 3-5) was assessed. Adult 20-week Bcl3-/- and WT mice bone phenotype, strength and turnover were assessed. A destabilisation of the medial meniscus (DMM) model of osteoarthritic ostephytogenesis was utilised to understand adult bone formation in Bcl3-/- mice (n = 11-13). RESULTS: Evaluation of Bcl3-/- mice revealed congenitally increased bone density, long bone dwarfism, increased bone biomechanical strength and altered bone turnover. Molecular and cellular characterisation of mesenchymal precursors showed that Bcl3-/- cells display an accelerated osteogenic transcriptional profile that leads to enhanced differentiation into osteoblasts with increased functional activity; which could be reversed with a mimetic peptide. In a model of osteoarthritis-induced osteophytogenesis, Bcl3-/- mice exhibit decreased pathological osteophyte formation (P < 0.05). CONCLUSION: Cumulatively, these findings demonstrate that BCL3 controls developmental mineralisation to enable appropriate bone formation, whilst in a pathological setting it contributes to skeletal pathology

    Survival of ART restorations assessed using selected FDI and modified ART restoration criteria

    Get PDF
    A new set of criteria for assessing the quality of restorations using modern restorative materials, named FDI criteria, was recently introduced. This study tested the null hypothesis that there is no significant difference in survival estimate percentages of ART restorations assessed using selected FDI and modified ART criteria after 1 and 5 years. One operator placed a total of 60 class I and 30 Class II high-viscosity glass-ionomer ART restorations in ninety 14- to15-year-olds. Two calibrated and independent evaluators using both criteria evaluated restorations on diestone replicas at baseline and after 1 and 5 years. Statistical analyses were done using the Kaplan–Meier method and log-rank test. The survival results of ART restorations assessed using both sets of criteria after 1 and 5 years (p = 0.27) did not differ significantly. Three ART restorations were assessed as failures according to the ART criteria, while they were assessed as survived using the FDI criteria. We conclude that the modified ART criteria enable reliable assessment of ART restorations in permanent teeth from diestone replicas and that there was no significant difference in survival estimates of ART restorations assessed using both sets of criteria. The null hypothesis was accepted

    Clostridium difficile is not associated with outbreaks of viral gastroenteritis in the elderly in the Netherlands

    Get PDF
    The coincidental increase in norovirus outbreaks and Clostridium difficile infection (CDI) raised the question of whether these events could be related, e.g. by enhancing spread by diarrhoeal disease outbreaks. Therefore, we studied the prevalence of C. difficile in outbreaks of viral gastroenteritis in nursing homes for the elderly and characterised enzyme immunoassay (EIA)-positive stool samples. Stool samples from nursing home residents (n = 752) in 137 outbreaks of viral aetiology were investigated by EIA for the presence of C. difficile toxins. Positive samples were further tested by a cell neutralisation cytotoxicity test, a second EIA and culture. Cultured isolates were tested for the presence of toxin genes, the production of toxins and characterised by 16S rRNA polymerase chain reaction (PCR) and sequencing. Twenty-four samples (3.2%) tested positive in the EIA. Of these 24 positive samples, only two were positive by cytotoxicity and three by a second EIA. Bacterial culture of 21 available stool samples yielded a toxinogenic C. difficile PCR ribotype 001 in one patient sample only. In conclusion, we found no evidence in this retrospective study for an association between viral gastroenteritis outbreaks and C. difficile. The high rate of false-positive EIA samples emphasises the need for second confirmation tests to diagnose CDI

    Ultrasound enhanced prehospital thrombolysis using microbubbles infusion in patients with acute ST elevation myocardial infarction: Rationale and design of the Sonolysis study

    Get PDF
    Contains fulltext : 70525.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND -: Experimental studies have shown that ultrasound contrast agents enhance the effectiveness of thrombolytic agents in the presence of ultrasound in vitro and in vivo. Recently, we have launched a clinical pilot study, called "Sonolysis", to study this effect in patients with ST-elevation myocardial infarction based on proximal lesions of the infarct-related artery. METHODS/DESIGN -: In our multicenter, randomized, placebo controlled clinical trial we will include patients between 18 and 80 years of age with their first ST-elevation myocardial infarction based on a proximal lesion of the infarct-related artery. After receiving a single bolus alteplase 50 mg IV (Actilyse(R) Boehringer Ingelheim GmbH), a loading dose of aspirin 500 mg, and heparin 5000 IU in the ambulance according to the prehospital thrombolysis protocol, patients, following oral informed consent, are randomized to undergo 15 minutes of pulsatile ultrasound with intravenous administration of ultrasound contrast agent or placebo without ultrasound. Afterwards coronary angiography and, if indicated, percutaneous coronary intervention will take place. A total of 60 patients will be enrolled in approximately 1 year.The primary endpoints are based on the coronary angiogram and consist of TIMI flow, corrected TIMI frame count, and myocardial blush grade. Follow-up includes 12-lead ECG, 2D-echocardiography, cardiac MRI, and enzyme markers to obtain our secondary endpoints, including the infarct size, wall motion abnormalities, and the global left ventricular function. DISCUSSION -: The Sonolysis study is the first multicenter, randomized, placebo controlled clinical trial investigating the therapeutic application of ultrasound and microbubbles in acute ST-elevation myocardial infarction patients. A positive finding may stimulate further research and technical innovations to implement the treatment in the ambulance and maybe obtain even more patency at an earlier stage. TRIAL REGISTRATION -: Trialregister NTR161

    Tradeoff between Stability and Maneuverability during Whole-Body Movements

    Get PDF
    Understanding how stability and/or maneuverability affects motor control strategies can provide insight on moving about safely in an unpredictable world. Stability in human movement has been well-studied while maneuverability has not. Further, a tradeoff between stability and maneuverability during movement seems apparent, yet has not been quantified. We proposed that greater maneuverability, the ability to rapidly and purposefully change movement direction and speed, is beneficial in uncertain environments. We also hypothesized that gaining maneuverability comes at the expense of stability and perhaps also corresponds with decreased muscle coactivation.We used a goal-directed forward lean movement task that integrated both stability and maneuverability. Subjects (n = 11) used their center of pressure to control a cursor on a computer monitor to reach a target. We added task uncertainty by shifting the target anterior-posterior position mid-movement. We used a balance board with a narrow beam that reduced the base of support in the medio-lateral direction and defined stability as the probability that subjects could keep the balance board level during the task.During the uncertainty condition, subjects were able to change direction of their anterior-posterior center of pressure more rapidly, indicating that subjects were more maneuverable. Furthermore, medio-lateral center of pressure excursions also approached the edges of the beam and reduced stability margins, implying that subjects were less stable (i.e. less able to keep the board level). On the narrow beam board, subjects increased muscle coactivation of lateral muscle pairs and had greater muscle activity in the left leg. However, there were no statistically significant differences in muscle activity amplitudes or coactivation with uncertainty.These results demonstrate that there is a tradeoff between stability and maneuverability during a goal-directed whole-body movement. Tasks with added uncertainty could help individuals learn to be more maneuverable yet sufficiently stable

    Targeted Inactivation of Rin3 Increases Trabecular Bone Mass by Reducing Bone Resorption and Favouring Bone Formation

    Get PDF
    AbstractCommon genetic variants at the RIN3 locus on chromosome 14q32 predispose to Paget’s disease of bone (PDB) but the mechanisms by which they do so are unknown. Here, we analysed the skeletal phenotype of female mice with targeted inactivation of the mouse Rin3 gene (Rin3−/−) as compared with wild-type littermates. The Rin3−/− mice had higher trabecular bone volume (BV/TV%) compared with wild type. Mean ± standard deviation values at the distal femur at 8 weeks were 9.0 ± 2.5 vs. 7.0 ± 1.5 (p = 0.002) and at 52 weeks were 15.8 ± 9.5 vs. 8.5 ± 4.2 (p = 0.002). No differences were observed in femoral cortical bone parameters with the exception of marrow diameter which was significantly smaller in 52-week-old Rin3−/− mice compared to wild type: (0.43 mm ± 0.1 vs. 0.57 mm ± 0.2 (p = 0.001). Bone histomorphometry showed a lower osteoclast surface / bone surface (Oc.S/BS%) at 8 weeks in Rin3−/− mice compared to wild type (24.1 ± 4.7 vs. 29.7 ± 6.6; p = 0.025) but there were no significant differences in markers of bone formation at this time. At 52 weeks, Oc.S/BS did not differ between genotypes but single labelled perimeter (SL.Pm/B.Pm (%)) was significantly higher in Rin3−/− mice (24.4 ± 6.4 vs. 16.5 ± 3.8, p = 0.003). We conclude that Rin3 negatively regulates trabecular bone mass in mice by inhibiting osteoclastic bone resorption and favouring bone formation. Our observations also suggest that the variants that predispose to PDB in humans probably do so by causing a gain-in-function of RIN3.</jats:p

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
    corecore