16,916 research outputs found

    On the Executability of Interactive Computation

    Full text link
    The model of interactive Turing machines (ITMs) has been proposed to characterise which stream translations are interactively computable; the model of reactive Turing machines (RTMs) has been proposed to characterise which behaviours are reactively executable. In this article we provide a comparison of the two models. We show, on the one hand, that the behaviour exhibited by ITMs is reactively executable, and, on the other hand, that the stream translations naturally associated with RTMs are interactively computable. We conclude from these results that the theory of reactive executability subsumes the theory of interactive computability. Inspired by the existing model of ITMs with advice, which provides a model of evolving computation, we also consider RTMs with advice and we establish that a facility of advice considerably upgrades the behavioural expressiveness of RTMs: every countable transition system can be simulated by some RTM with advice up to a fine notion of behavioural equivalence.Comment: 15 pages, 0 figure

    Skating on slippery ice

    Get PDF
    The friction of a stationary moving skate on smooth ice is investigated, in particular in relation to the formation of a thin layer of water between skate and ice. It is found that the combination of ploughing and sliding gives a friction force that is rather insensitive for parameters such as velocity and temperature. The weak dependence originates from the pressure adjustment inside the water layer. For instance, high velocities, which would give rise to high friction, also lead to large pressures, which, in turn, decrease the contact zone and so lower the friction. The theory is a combination and completion of two existing but conflicting theories on the formation of the water layer.Comment: 26 pages, 8 figures Posted at SciPos

    Reptation in the Rubinstein-Duke model: the influence of end-reptons dynamics

    Full text link
    We investigate the Rubinstein-Duke model for polymer reptation by means of density-matrix renormalization group techniques both in absence and presence of a driving field. In the former case the renewal time \tau and the diffusion coefficient D are calculated for chains up to N=150 reptons and their scaling behavior in N is analyzed. Both quantities scale as powers of N: τ∼Nz\tau \sim N^z and D∼1/NxD \sim 1/N^x with the asymptotic exponents z=3 and x=2, in agreement with the reptation theory. For an intermediate range of lengths, however, the data are well-fitted by some effective exponents whose values are quite sensitive to the dynamics of the end reptons. We find 2.7 <z< 3.3 and 1.8 <x< 2.1 for the range of parameters considered and we suggest how to influence the end reptons dynamics in order to bring out such a behavior. At finite and not too small driving field, we observe the onset of the so-called band inversion phenomenon according to which long polymers migrate faster than shorter ones as opposed to the small field dynamics. For chains in the range of 20 reptons we present detailed shapes of the reptating chain as function of the driving field and the end repton dynamics.Comment: RevTeX 12 Pages and 14 figure

    A penalty method for PDE-constrained optimization in inverse problems

    Full text link
    Many inverse and parameter estimation problems can be written as PDE-constrained optimization problems. The goal, then, is to infer the parameters, typically coefficients of the PDE, from partial measurements of the solutions of the PDE for several right-hand-sides. Such PDE-constrained problems can be solved by finding a stationary point of the Lagrangian, which entails simultaneously updating the paramaters and the (adjoint) state variables. For large-scale problems, such an all-at-once approach is not feasible as it requires storing all the state variables. In this case one usually resorts to a reduced approach where the constraints are explicitly eliminated (at each iteration) by solving the PDEs. These two approaches, and variations thereof, are the main workhorses for solving PDE-constrained optimization problems arising from inverse problems. In this paper, we present an alternative method that aims to combine the advantages of both approaches. Our method is based on a quadratic penalty formulation of the constrained optimization problem. By eliminating the state variable, we develop an efficient algorithm that has roughly the same computational complexity as the conventional reduced approach while exploiting a larger search space. Numerical results show that this method indeed reduces some of the non-linearity of the problem and is less sensitive the initial iterate
    • …
    corecore