7,171 research outputs found
One loop light-cone QCD, effective action for reggeized gluons and QCD RFT calculus
The effective action for reggeized gluons is based on the gluodynamic
Yang-Mills Lagrangian with external current for longitudinal gluons added, see
[1]. On the base of classical solutions, obtained in [2], the one-loop
corrections to this effective action in light-cone gauge are calculated. The
RFT calculus for reggeized gluons similarly to the RFT introduced in [3] is
proposed and discussed. The correctness of the results is verified by
calculation of the propagator of and reggeized gluons fields
and application of the obtained results is discussed as well.Comment: 24 page
Timing and Spectral Properties of X-ray Emission from the Converging Flows onto Black hole: Monte-Carlo Simulations
We demonstrate that a X-ray spectrum of a converging inflow (CI) onto a black
hole is the sum of a thermal (disk) component and the convolution of some
fraction of this component with the Comptonization spread (Green's) function.
The latter component is seen as an extended power law at energies much higher
than the characteristic energy of the soft photons. We show that the high
energy photon production (source function) in the CI atmosphere is distributed
with the characteristic maximum at about the photon bending radius, 1.5r_S,
independently of the seed (soft) photon distribution. We show that high
frequency oscillations of the soft photon source in this region lead to the
oscillations of the high energy part of the spectrum but not of the thermal
component. The high frequency oscillations of the inner region are not
significant in the thermal component of the spectrum. We further demonstrate
that Doppler and recoil effects (which are responsible for the formation of the
CI spectrum) are related to the hard (positive) and soft (negative) time lags
between the soft and hard photon energy channels respectively.Comment: 9 pages and 4 figures, to be published in the Astrophysical Journal
Letter
Comptomization and radiation spectra of X-ray sources. Calculation of the Monte Carlo method
The results of computations of the Comptomization of low frequency radiation in weakly relativistic plasma are presented. The influence of photoabsorption by iron ions on a hard X-ray spectrum is considered
X-ray Polarization Signatures of Compton Scattering in Magnetic Cataclysmic Variables
Compton scattering within the accretion column of magnetic cataclysmic
variables (mCVs) can induce a net polarization in the X-ray emission. We
investigate this process using Monte Carlo simulations and find that
significant polarization can arise as a result of the stratified flow structure
in the shock-ionized column. We find that the degree of linear polarization can
reach levels up to ~8% for systems with high accretion rates and low
white-dwarf masses, when viewed at large inclination angles with respect to the
accretion column axis. These levels are substantially higher than previously
predicted estimates using an accretion column model with uniform density and
temperature. We also find that for systems with a relatively low-mass white
dwarf accreting at a high accretion rate, the polarization properties may be
insensitive to the magnetic field, since most of the scattering occurs at the
base of the accretion column where the density structure is determined mainly
by bremsstrahlung cooling instead of cyclotron cooling.Comment: 7 pages, 8 figures, accepted by MNRA
Inverse Compton scattering in mildly relativistic plasma
We investigated the effect of inverse Compton scattering in mildly
relativistic static and moving plasmas with low optical depth using Monte Carlo
simulations, and calculated the Sunyaev-Zel'dovich effect in the cosmic
background radiation. Our semi-analytic method is based on a separation of
photon diffusion in frequency and real space. We use Monte Carlo simulation to
derive the intensity and frequency of the scattered photons for a monochromatic
incoming radiation. The outgoing spectrum is determined by integrating over the
spectrum of the incoming radiation using the intensity to determine the correct
weight. This method makes it possible to study the emerging radiation as a
function of frequency and direction. As a first application we have studied the
effects of finite optical depth and gas infall on the Sunyaev-Zel'dovich effect
(not possible with the extended Kompaneets equation) and discuss the parameter
range in which the Boltzmann equation and its expansions can be used. For high
temperature clusters ( keV) relativistic corrections based
on a fifth order expansion of the extended Kompaneets equation seriously
underestimate the Sunyaev-Zel'dovich effect at high frequencies. The
contribution from plasma infall is less important for reasonable velocities. We
give a convenient analytical expression for the dependence of the cross-over
frequency on temperature, optical depth, and gas infall speed. Optical depth
effects are often more important than relativistic corrections, and should be
taken into account for high-precision work, but are smaller than the typical
kinematic effect from cluster radial velocities.Comment: LateX, 30 pages and 11 figures. Accepted for publication in the
Astrophysical Journa
Evolution of the Low-Energy Photon Spectra in Gamma-Ray Bursts
We report evidence that the asymptotic low-energy power law slope alpha
(below the spectral break) of BATSE gamma-ray burst photon spectra evolves with
time rather than remaining constant. We find a high degree of positive
correlation exists between the time-resolved spectral break energy E_pk and
alpha. In samples of 18 "hard-to-soft" and 12 "tracking" pulses, evolution of
alpha was found to correlate with that of the spectral break energy E_pk at the
99.7% and 98% confidence levels respectively. We also find that in the flux
rise phase of "hard-to-soft" pulses, the mean value of alpha is often positive
and in some bursts the maximum value of alpha is consistent with a value > +1.
BATSE burst 3B 910927, for example, has a alpha_max equal to 1.6 +/- 0.3. These
findings challenge GRB spectral models in which alpha must be negative of
remain constant.Comment: 12 pages (including 6 figures), accepted to Ap
X-ray Spectral Signatures of the Photon Bubble Model for Ultraluminous X-ray Sources
The nature of ultraluminous X-ray sources in nearby galaxies is one of the
major open questions in modern X-ray astrophysics. One possible explanation for
these objects is an inhomogeneous, radiation dominated accretion disk around a
black hole -- the so-called ``photon bubble'' model. While
previous studies of this model have focused primarily on its
radiation-hydrodynamics aspects, in this paper, we provide an analysis of its
X-ray spectral (continuum and possible edge and line) characteristics. Compton
reflection between high and low density regions in the disk may provide the key
to distinguishing this model from others, such as accretion onto an
intermediate mass black hole. We couple a Monte Carlo/Fokker-Planck radiation
transport code with the XSTAR code for reflection to simulate the photon
spectra produced in a photon bubble model for ULXs. We find that reflection
components tend to be very weak and in most cases not observable, and make
predictions for the shape of the high-energy Comptonizing spectra. In many
cases the Comptonization dominates the spectra even down to a few keV.
In one simulation, a \sim 9 \kev feature was found, which may be considered a
signature of photon bubbles in ULXs; furthermore, we make predictions of high
energy power-laws which may be observed by future instruments.Comment: Accepted for publication in the Astrophysical Journa
Wien Fireball Model of Relativistic Outflows in Active Galactic Nuclei
We study steady and spherically symmetric outflows of pure electron-positron
pair plasma as a possible acceleration mechanism of relativistic jets up to the
bulk Lorentz factor of greater than 10. These outflows are initiated by the
``Wien fireball'', which is optically thick to Compton scattering but thin to
absorption and in a Wien equilibrium state between pairs and photons at a
relativistic temperature.Comment: 16 pages, 13 figures, 1 table, ApJ in pres
Low frequency radio and X-ray properties of core-collapse supernovae
Radio and X-ray studies of young supernovae probe the interaction between the
supernova shock waves and the surrounding medium and give clues to the nature
and past of the progenitor star. Here we discuss the early emission from type
Ic SN 2002ap and argue that repeated Compton boosting of optical photons by hot
electrons presents the most natural explanation of the prompt X-ray emission.
We describe the radio spectrum of another type Ic SN 2003dh (GRB030329)
obtained with combined GMRT and VLA data. We report on the low frequency radio
monitoring of SN 1995N and our objectives of distinguishing between competing
models of X-ray emission from this SN and the nature of its progenitor by X-ray
spectroscopy. Radio studies on SN 2001gd, SN 2001ig and SN 2002hh are
mentioned.Comment: 5 pages, 4 figures. Uses svmult.cls. To appear in proceedings of IAU
Colloquium 192 "Supernovae (10 years of SN 1993J)", April 2003, Valencia,
Spain, eds. J. M. Marcaide and K. W. Weile
- …