5 research outputs found

    Next-generation muscle-directed gene therapy by in silico vector design

    Get PDF
    There is an urgent need to develop the next-generation vectors for gene therapy of muscle disorders, given the relatively modest advances in clinical trials. These vectors should express substantially higher levels of the therapeutic transgene, enabling the use of lower and safer vector doses. In the current study, we identify potent muscle-specific transcriptional cisregulatory modules (CRMs), containing clusters of transcription factor binding sites, using a genome-wide data-mining strategy. These novel muscle-specific CRMs result in a substantial increase in muscle-specific gene transcription (up to 400-fold) when delivered using adeno-associated viral vectors in mice. Significantly higher and sustained human micro-dystrophin and follistatin expression levels are attained than when conventional promoters are used. This results in robust phenotypic correction in dystrophic mice, without triggering apoptosis or evoking an immune response. This multidisciplinary approach has potentially broad implications for augmenting the efficacy and safety of muscle-directed gene therapy

    Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics

    No full text
    To date, no extensive study of the phase diagram for binary fluid mixtures in dissipative particle dynamics (DPD) has been published. This is especially pertinent for newer parameterization schemes where the self-self interaction, or the effective volume, of different particle types is varied. This work presents an exhaustive study of the parameter space concerning DPD particles with soft interaction potentials. Moreover, we propose a closed-form coexistence equation or binodal curve that is inspired by the Flory-Huggins model. This equation describes the phase diagram of all binary mixtures made up out of monomers, homopolymers, and the mixtures thereof when self-self interactions are varied. The mean absolute percentage error (MAPE) of the equation on simulated data, including validation simulations, is 1.02%. The equation can a priori predict the phase separation of mixtures using only DPD interaction parameters. The proposed coexistence equation can therefore be used to directly validate interaction parameters resulting from novel parameterization schemes, including coarse graining and equations of state, without the need for additional simulations. Finally, it is shown that the choice of bond potential markedly influences phase behavior
    corecore