96 research outputs found

    Epidemiology of type 2 diabetes in the Middle East and North Africa: Challenges and call for action

    Get PDF
    Type 2 diabetes continues to be a serious and highly prevalent public health problem worldwide. In 2019, the highest prevalence of diabetes in the world at 12.2%, with its associated morbidity and mortality, was found in the Middle East and North Africa region. In addition to a genetic predisposition in its population, evidence suggests that obesity, physical inactivity, urbanization, and poor nutritional habits have contributed to the high prevalence of diabetes and prediabetes in the region. These risk factors have also led to an earlier onset of type 2 diabetes among children and adolescents, negatively affecting the productive years of the youth and their quality of life. Furthermore, efforts to control the rising prevalence of diabetes and its complications have been challenged and complicated by the political instability and armed conflict in some countries of the region and the recent coronavirus disease 2019. Broad strategies, coupled with targeted interventions at the regional, national, and community levels are needed to address and curb the spread of this public health crisis

    Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia

    Get PDF
    Oxidative stress, through the production of reactive oxygen species (ROS), has been proposed as the root cause underlying the development of insulin resistance, β-cell dysfunction, impaired glucose tolerance and type 2 diabetes mellitus (T2DM). It has also been implicated in the progression of long-term diabetes complications, including microvascular and macrovascular dysfunction. Excess nourishment and a sedentary lifestyle leads to glucose and fatty acid overload, resulting in production of ROS. Additionally, reaction of glucose with plasma proteins forms advanced glycation end products, triggering production of ROS. These ROS initiate a chain reaction leading to reduced nitric oxide availability, increased markers of inflammation and chemical modification of lipoproteins, all of which may increase the risk of atherogenesis. With the postulation that hyperglycaemia and fluctuations in blood glucose lead to generation of ROS, it follows that aggressive treatment of fasting and postprandial hyperglycaemia is important for prevention of micro and macrovascular complications in T2DM

    Arachidonic acid stimulates glucose uptake in 3T3-L1 adipocytes by increasing GLUT1 and GLUT4 levels at the plasma membrane: Evidence for involvement of lipoxygenase metabolites and peroxisome proliferator-activated receptor

    Get PDF
    Exposure of insulin-sensitive tissues to free fatty acids can impair glucose disposal through inhibition of carbohydrate oxidation and glucose transport. However, certain fatty acids and their derivatives can also act as endogenous ligands for peroxisome proliferator-activated receptor gamma (PPARgamma ), a nuclear receptor that positively modulates insulin sensitivity. To clarify the effects of externally delivered fatty acids on glucose uptake in an insulin-responsive cell type, we systematically examined the effects of a range of fatty acids on glucose uptake in 3T3-L1 adipocytes. Of the fatty acids examined, arachidonic acid (AA) had the greatest positive effects, significantly increasing basal and insulin-stimulated glucose uptake by 1.8- and 2-fold, respectively, with effects being maximal at 4 h at which time membrane phospholipid content of AA was markedly increased. The effects of AA were sensitive to the inhibition of protein synthesis but were unrelated to changes in membrane fluidity. AA had no effect on total cellular levels of glucose transporters, but significantly increased levels of GLUT1 and GLUT4 at the plasma membrane. While the effects of AA were insensitive to cyclooxygenase inhibition, the lipoxygenase inhibitor, nordihydroguaiaretic acid, substantially blocked the AA effect on basal glucose uptake. Furthermore, adenoviral expression of a dominant-negative PPARgamma mutant attenuated the AA potentiation of basal glucose uptake. Thus, AA potentiates basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes by a cyclooxygenase-independent mechanism that increases the levels of both GLUT1 and GLUT4 at the plasma membrane. These effects are at least partly dependent on de novo protein synthesis, an intact lipoxygenase pathway and the activation of PPARgamma with these pathways having a greater role in the absence than in the presence of insulin

    Gezondheidswinst bij diabetes met beter opvolgen richtlijnen

    No full text
    corecore