2,076 research outputs found
Hybrid stabilizing control on a real mobile robot
To establish empirical verification of a stabilizing controller for nonholonomic systems, the authors implement a hybrid control concept on a 2-DOF mobile robot. Practical issues of velocity control are also addressed through a velocity controller which transforms the mobile robot to a new system with linear and angular velocity inputs. Experiments in the physical meaning of different controller components provide insights which result in significant improvements in controller performanc
A clinical effect of disease-modifying treatment on alloimmunisation in transfused patients with myelodysplastic syndromes:Data from a population-based study
BACKGROUND: Alloimmunisation against blood products is an adverse event, causing time-consuming compatibility testing. Current literature has not yet identified the influence of treatment on the risk of alloimmunisation in patients with myelodysplastic syndromes (MDS). MATERIALS AND METHODS: An observational, population-based study, using the HemoBase registry, was performed including all transfused patients who were diagnosed with MDS between 2005 and 2017 in Friesland, a province in the Netherlands. Information about transfusion dates, types, and treatment regimens was collected from the health records. Blood products were matched for ABO and Rhesus D. The effect of disease-modifying treatment was estimated with incidence rates and a Cox time-dependent analysis. RESULTS: 233 patients were included in this study, with a median follow-up of 13.0 months. Alloimmunisation occurred in 21 patients (9.0%) and predominantly occurred early in follow-up. Three (5%) and 18 (11%) alloimmunisation events occurred in patients with and without disease-modifying treatment, respectively. The hazard ratio for alloimmunisation without treatment compared to during treatment was 2.7 (95% CI: 0.35–20.0), with incidence rates of 7.18 and 2.41 per 100 patient-years, respectively. DISCUSSION: In a non-selected real-world population of MDS patients receiving blood transfusions, the percentage of patients with alloimmunisation was below 10%. The results of this study support the hypothesis that disease-modifying treatment affects the ability of the immune system to mount an antibody response to non-self blood group antigens
Tumour-derived extracellular vesicles in blood of metastatic cancer patients associate with overall survival
Background: Circulating tumour cells (CTCs) in blood associate with overall survival (OS) of cancer patients, but they are detected in extremely low numbers. Large tumour-derived extracellular vesicles (tdEVs) in castration-resistant prostate cancer (CRPC) patients are present at around 20 times higher frequencies than CTCs and have equivalent prognostic power. In this study, we explored the presence of tdEVs in other cancers and their association with OS. Methods: The open-source ACCEPT software was used to automatically enumerate tdEVs in digitally stored CellSearch® images obtained from previously reported CTC studies evaluating OS in 190 CRPC, 450 metastatic colorectal cancer (mCRC), 179 metastatic breast cancer (MBC) and 137 non-small cell lung cancer (NSCLC) patients before the initiation of a new treatment. Results: Presence of unfavourable CTCs and tdEVs is predictive of OS, with respective hazard ratios (HRs) of 2.4 and 2.2 in CRPC, 2.7 and 2.2 in MBC, 2.3 and 1.9 in mCRC and 2.0 and 2.4 in NSCLC, respectively. Conclusions: tdEVs have equivalent prognostic value as CTCs in the investigated metastatic cancers. CRPC, mCRC, and MBC (but not NSCLC) patients with favourable CTC counts can be further prognostically stratified using tdEVs. Our data suggest that tdEVs could be used in clinical decision-making.</p
Earth’s climate response to a changing Sun
For centuries, scientists have been fascinated by the role of the Sun in the Earth’s climate system. Recent discoveries, outlined in this book, have gradually unveiled a complex picture, in which our variable Sun a¬ffects the climate variability via a number of subtle pathways, the implications of which are only now becoming clear. This handbook provides the scientifically curious, from undergraduate students to policy makers with a complete and accessible panorama of our present understanding of the Sun-climate connection. 61 experts from di¬fferent communities have contributed to it, which reflects the highly multidisciplinary nature of this topic. The handbook is organised as a mosaic of short chapters, each of which addresses a specific aspect, and can be read independently. The reader will learn about the assumptions, the data, the models, and the unknowns behind each mechanism by which solar variability may impact climate variability. None of these mechanisms can adequately explain global warming observed since the 1950s. However, several of them do impact climate variability, in particular on a regional level. This handbook aims at addressing these issues in a factual way, and thereby challenge the reader to sharpen his/her critical thinking in a debate that is frequently distorted by unfounded claims
Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence.
BACKGROUND: The structure-specific ERCC1/XPF endonuclease complex that contains the ERCC1 and XPF subunits is implicated in the repair of two distinct types of lesions in DNA: nucleotide excision repair (NER) for ultraviolet-induced lesions and bulky chemical adducts; and recombination repair of the very genotoxic interstrand cross-links. RESULTS: Here, we present a detailed analysis of two types of mice with mutations in ERCC1, one in which the gene is 'knocked out', and one in which the encoded protein contains a seven amino-acid carboxy-terminal truncation. In addition to the previously reported symptoms of severe runting, abnormalities of liver nuclei and greatly reduced lifespan (which appeared less severe in the truncation mutant), both types of ERCC1-mutant mouse exhibited an absence of subcutaneous fat, early onset of ferritin deposition in the spleen, kidney malfunction, gross abnormalities of ploidy and cytoplasmic invaginations in nuclei of liver and kidney, and compromised NER and cross-link repair. We also found that heterozygosity for ERCC1 mutations did not appear to provide a selective advantage for chemically induced tumorigenesis. An important clue to the cause of the very severe ERCC1-mutant phenotypes is our finding that ERCC1-mutant cells undergo premature replicative senescence, unlike cells from mice with a defect only in NER. CONCLUSIONS: Our results strongly suggest that the accumulation in ERCC1-mutant mice of endogenously generated DNA interstrand cross-links, which are normally repaired by ERCC1-dependent recombination repair, underlies both the early onset of cell cycle arrest and polyploidy in the liver and kidney. Thus, our work provides an insight into the molecular basis of ageing and highlights the role of ERCC1 and interstrand DNA cross-links
Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition.
A mouse model for the nucleotide excision repair disorder Cockayne syndrome (CS) was generated by mimicking a truncation in the CSB(ERCC6) gene of a CS-B patient. CSB-deficient mice exhibit all of the CS repair characteristics: ultraviolet (UV) sensitivity, inactivation of transcription-coupled repair, unaffected global genome repair, and inability to resume RNA synthesis after UV exposure. Other CS features thought to involve the functioning of basal transcription/repair factor TFIIH, such as growth failure and neurologic dysfunction, are present in mild form. In contrast to the human syndrome, CSB-deficient mice show increased susceptibility to skin cancer. Our results demonstrate that transcription-coupled repair of UV-induced cyclobutane pyrimidine dimers contributes to the prevention of carcinogenesis in mice. Further, they suggest that the lack of cancer predisposition in CS patients is attributable to a global genome repair process that in humans is more effective than in rodents
Mouse model for the DNA repair/basal transcription disorder Trichothiodystrophy reveals cancer predisposition.
Patients with the nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) are highly predisposed to develop sunlight-induced skin cancer, in remarkable contrast to photosensitive NER-deficient trichothiodystrophy (TTD) patients carrying mutations in the same XPD gene. XPD encodes a helicase subunit of the dually functional DNA repair/basal transcription complex TFIIH. The pleiotropic disease phenotype is hypothesized to be, in part, derived from a repair defect causing UV sensitivity and, in part, from a subtle, viable basal transcription deficiency accounting for the cutaneous, developmental, and the typical brittle hair features of TTD. To understand the relationship between deficient NER and tumor susceptibility, we used a mouse model for TTD that mimics an XPD point mutation of a TTD patient in the mouse germline. Like the fibroblasts from the patient, mouse cells exhibit a partial NER defect, evident from the reduced UV-induced DNA repair synthesis (residual repair capacity approximately 25%), limited recovery of RNA synthesis after UV exposure, and a relatively mild hypersensitivity to cell killing by UV or 7,12-dimethylbenz[a]anthracene. In accordance with the cellular studies, TTD mice exhibit a modestly increased sensitivity to UV-induced inflammation and hyperplasia of the skin. In striking contrast to the human syndrome, TTD mice manifest a dear susceptibility to UV- and 7,12-dimethylbenz[a]anthracene-induced skin carcinogenesis, albeit not as pronounced as the totally NER-deficient XPA mice. These findings open up the possibility that TTD is associated with a so far unnoticed cancer predisposition and support the notion that a NER deficiency enhances cancer susceptibility. These findings have important implications for the etiology of the human disorder and for the impact of NER on carcinogenesis
- …