653 research outputs found

    Nanochromics: Old Materials, New Structures And Architectures For High Performance Devices

    Get PDF
    Due to the development of nanoscience, the interest in electrochromism has increased and new assemblies of electrochromic materials at nanoscale leading to higher efficiencies and chromatic contrasts, low switching times and the possibility of color tuning have been developed. These advantages are reached due to the extensive surface area found in nanomaterials and the large amount of organic electrochromic molecules that can be easily attached onto inorganic nanoparticles, as TiO2 or SiO2. Moreover, the direct contact between electrolyte and nanomaterials produces high ionic transfer rates, leading to fast charge compensation, which is essential for high performance electrochromic electrodes. Recently, the layer-by-layer technique was presented as an interesting way to produce different architectures by the combination of both electrochromic nanoparticles and polymers. The present paper shows some of the newest insights into nanochromic science. ©2008 Sociedade Brasileira de Química.19712481257Somani, P.R., Radhakrishnan, S., (2003) Mater. Chem. Phys, 77, p. 117Monk, P.M.S., Mortimer, R.J., Rosseinsky, D.R., (1995) Electrochromism: Fundamentals and Applications, , John Wiley & Sons: New YorkRowley, N.M., Mortimer, R.J., (2002) Sci. Prog, 85, p. 243Mortimer, R.J., (1997) Chem. Soc. Rev, 26, p. 147De Oliveira, S.C., Torresi, R.M., Córdoba de Torresi, S.I., (2000) Quim. Nova, 23, p. 79Livage, J., Ganguli, D., (2001) Sol. Energy Mater, 68, p. 365Rauh, R.D., (1999) Electrochim. Acta, 44, p. 3165Rosseinsky, D.R., Mortimer, R.J., (2001) Adv. Mater, 13, p. 783Monk, P.M.S., Mortimer, R.J., Rosseinky, D.R., (2007) Electrochromism and Electrochromic Devices, , University Press: CambridgeCordoba de Torresi, S.I., Gorenstein, A., (1992) Electrochim. Acta, 37, p. 2015Cantao, M.P., Cisneros, J.I., Torresi, R.M., (1995) Thin Solid Films, 259, p. 70Cantao, M.P., Cisneros, J.I., Torresi, R.M., (1994) J. Phys. Chem, 98, p. 4865Harizanov, O., Harizanova, A., (2000) Sol. Energy Mater, 63, p. 185Granqvist, C.G., (1999) Electrochim. Acta, 44, p. 3005Yu, Z., Jia, X., Du, J., Zhang, J., (2000) Sol. Energy Mater, 64, p. 55Gabrielli, C., Keddam, M., Perrot, H., Torresi, R., (1994) J. Electroanal. Chem, 378, p. 85Cordoba de Torresi, S.I., Gorenstein, A., Torresi, R.M., Vazquez, M.V., (1991) J. Electroanal. Chem, 318, p. 131Ellis, D., Eckhoff, M., Neff, V.D., (1981) J. Phys. Chem, 85, p. 1225DeLongchamp, D.M., Kastantin, M., Hammond, P.T., (2003) Chem. Mater, 15, p. 1575Argun, A.A., Aubert, P.-H., Thompson, B.C., Schwendeman, I., Gaupp, C.L., Hwang, J., Pinto, N.J., Reynolds, J.R., (2004) Chem. Mater, 16, p. 4401Mortimer, R.J., (1999) Electrochim. Acta, 44, p. 2971Córdoba de Torresi, S.I., Torresi, R.M., Ciampi, G., Luengo, C.A., (1994) J. Electroanal. Chem, 377, p. 283Rocco, A.M., De Paoli, M.-A., Zanelli, A., Mastragostino, M., (1996) Electrochim. Acta, 41, p. 2805Guerrero, D.J., Ren, X., Ferraris, J.P., (1994) Chem. Mater, 6, p. 1437Diaz, A.F., Logan, J.A., (1980) J. Electroanal. Chem, 111, p. 111Bernard, M.C., Cordoba de Torresi, S.I., Hugot-Le Goff, A., (1992) Sol. Energy Mater, 25, p. 225Bernard, M.C., Bich, V.T., Cordoba de Torresi, S.I., Hugot-Le Goff, A., (1997) Synth. Met, 84, p. 785Gazotti, W.A., Jannini, M.J.D., Cordoba de Torresi, S.I., De Paoli, M.-A., (1997) J. Electroanal. Chem, 440, p. 193Beer, P.D., Kocian, O., Mortimer, R.J., Ridgway, C., (1993) J. Chem. Soc. Faraday Trans, 89, p. 333Alivisatos, A.P., (1996) J. Phys. Chem, 100, p. 13226Trindade, T., O'Brien, P., Pickett, N.L., (2001) Chem. Mater, 13, p. 3843Wang, Y., Herron, N., (1991) J. Phys. Chem, 95, p. 525Pol, S.V., Pol, V.G., Kessler, V.G., Seisenbaeva, G.A., Sung, M., Asai, S., Gedanken, A., (2004) J. Phys. Chem. B, 108, p. 6322Jeevanandam, P., Koltypin, Y., Gedanken, A., (2001) Nano Lett, 1, p. 263Carnes, C.L., Stipp, J., Klabunde, K.J., Bonevich, J., (2002) Langmuir, 18, p. 1352Jeevanandam, P., Koltypin, Y., Gedanken, A., Mastai, Y., (2000) J. Mater. Chem, 10, p. 511Fiorito, P.A., Gonçales, V.R., Ponzio, E.A., Cordoba de Torresi, S.I., (2005) Chem. Commun, p. 366Pauporte, T., Andolfatto, F., Durand, R., (1999) Electrochim. Acta, 45, p. 431Santato, C., Odziemkowski, M., Ulmann, M., Augustynski, J., (2001) J. Am. Chem. Soc, 123, p. 10639Cosnier, S., Gondran, C., Senillou, A., Graetzel, M., Vlachopoulos, N., (1997) Electroanalysis, 9, p. 1387Mayor, M., Hagfeldt, A., Graetzel, M., Walder, L., (1996) Chimia, 50, p. 47Athanassov, Y., Rotzinger, F.P., Pechy, P., Graetzel, M., (1997) J. Phys. Chem. B, 101, p. 2558Bonhote, P., Moser, J.-E., Humphry-Baker, R., Vlachopoulos, N., Zakeeruddin, S.M., Walder, L., Graetzel, M., (1999) J. Am. Chem. Soc, 121, p. 1324Nogueira, A.F., Toma, S.H., Vidotti, M., Formiga, A.L.B., Cordoba de Torresi, S.I., Toma, H.E., (2005) New J. Chem, 29, p. 320Campus, F., Bonhote, P., Gratzel, M., Heinen, S., Walder, L., (1999) Sol. Energy Mater, 56, p. 281Bonhote, P., Gogniat, E., Campus, F., Walder, L., Gratzel, M., (1999) Displays, 20, p. 137Imabayashi, S., Kitamura, N., Tazuke, S., Tokuda, K., (1988) J. Electroanal. Chem, 239, p. 397Rosseinsky, D.R., Monk, P.M.S., (1992) Sol. Energy Mater, 25, p. 201zum Felde, U., Haase, M., Weller, H., (2000) J. Phys. Chem. B, 104, p. 9388Cummins, D., Boschloo, G., Ryan, M., Corr, D., Rao, S.N., Fitzmaurice, D., (2000) J. Phys. Chem. B, 104, p. 11449Deepa, M., Srivastava, A.K., Sood, K.N., Agnihotry, S.A., (2006) Nanotechnology, 17, p. 2625Nishio, K., Iwata, K., Masuda, H., (2003) Electrochem. Solid-State Lett, 6, pp. H21Hong, S.F., Chen, L.C., (2008) Electrochim. Acta, 53, p. 5306Park, K.W., (2005) Electrochim. Acta, 50, p. 4690Park, K.W., Song, Y.J., Lee, J.M., Han, S.B., (2007) Electrochem. Commun, 9, p. 2111Park, K.W., Shin, H.S., Seong, T.Y., Sung, E.Y., (2006) Appl. Phys. Lett, 88, p. 211107Namboothiry, M.G.A., Zimmerman, T., Coldren, F.M., Liu, L., Kim, K., Carroll, D.L., (2007) Synth. Metals, 157, p. 580Lee, S.H., Deshpande, R., Parilla, P.A., Jones, K.M., To, B., Mahan, A.H., (2006) Adv. Mater, 18, p. 763Decher, G., (1997) Science, 277, p. 1232Fou, A.C., Onitsuka, O., Ferreira, M., Rubner, M.F., Hsieh, B.R., (1996) J. Appl. Phys, 79, p. 7501Lvov, Y., Ariga, K., Onda, M., Ichinose, I., Kunitake, T., (1997) Langmuir, 13, p. 6195Lvov, Y.M., Rusling, J.F., Thomsen, D.L., Papadimitrakopoulos, F., Kawakami, T., Kunitake, T., (1998) Chem. Commun, p. 1229Decher, G., Hong, J.D., Lowack, K., Lvov, Y., Schmitt, J., (1994) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci, 446, p. 267DeLongchamp, D.M., Hammond, P.T., (2004) Adv. Funct. Mater, 14, p. 224Baioni, A.P., Vidotti, M., Fiorito, P.A., Ponzio, E.A., Córdoba de Torresi, S.I., (2007) Langmuir, 27, p. 6796Vidotti, M., Greco, C.V., Ponzio, E.A., Córdoba de Torresi, S.I., (2006) Electrochem. Comm, 8, p. 554Vidotti, M., Salvador, R.P., Ponzio, E.A., Córdoba de Torresi, S.I., (2007) J. Nanosci. Nanotechnol, 7, p. 3221Vidotti, M., Silva, M.R., Salvador, R.P., Córdoba de Torresi, S.I., Dall'Antonia, L.H., (2008) Electrochim. Acta, 53, p. 4030DeLongchamp, D.M., Hammond, P.T., (2004) Chem. Mater, 16, p. 4799Shinbo, K., Onishi, K., Miyabayashi, S., Takahashi, K., Katagiri, S., Kato, K., Kaneko, F., Advincula, R.C., (2003) Thin Solid Films, 438-439, p. 17

    Nanochromics: old materials, new structures and architectures for high performance devices

    Get PDF
    Due to the development of nanoscience, the interest in electrochromism has increased and new assemblies of electrochromic materials at nanoscale leading to higher efficiencies and chromatic contrasts, low switching times and the possibility of color tuning have been developed. These advantages are reached due to the extensive surface area found in nanomaterials and the large amount of organic electrochromic molecules that can be easily attached onto inorganic nanoparticles, as TiO2 or SiO2. Moreover, the direct contact between electrolyte and nanomaterials produces high ionic transfer rates, leading to fast charge compensation, which is essential for high performance electrochromic electrodes. Recently, the layer-by-layer technique was presented as an interesting way to produce different architectures by the combination of both electrochromic nanoparticles and polymers. The present paper shows some of the newest insights into nanochromic science.Com o desenvolvimento da nanociência, o estudo do fenômeno do eletrocromismo desperta forte e continuado interesse devido à possibilidade de obter maiores eficiências eletrocrômicas, contrastes cromáticos, sintonização de cores e baixos tempos de resposta por meio da montagem de nanomateriais. Estas vantagens são possíveis devido à alta área superficial que os nanomateriais possuem e a enorme quantidade de moléculas orgânicas eletrocrômicas que podem ser facilmente ligadas a nanopartículas inorgânicas como TiO2 ou SiO2. Somado a isto, o contato direto entre o eletrólito e os nanomateriais produz altas velocidades de transferência iônica, com a concomitante compensação de carga rápida, o que é essencial para preparar eletrodos eletrocrômicos de alto desempenho. Recentemente a técnica de deposição eletrostática camada por camada foi apresentada como uma maneira interessante de preparar diferentes arquiteturas combinando nanopartículas e polímeros. O presente trabalho mostra alguns dos últimos avanços em nanocromismo.FAPESPCNPqInstituto do Milênio de Materiais Complexo

    Spectroscopic characterization and investigation of the dynamic of charge compensation process of supramolecular films derived from tetra-2-pyridyl-1,4-pyrazine ligand

    Get PDF
    This work describes the infrared spectroscopy characterization and the charge compensation dynamics in supramolecular film FeTPPZFeCN derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) with hexacyanoferrate, as well as the hybrid film formed by FeTPPZFeCN and polypyrrole (PPy). For supramolecular film, it was found that anion flux is greater in a K+ containing solution than in Li+ solution, which seems to be due to the larger crystalline ionic radius of K+. The electroneutralization process is discussed in terms of electrostatic interactions between cations and metallic centers in the hosting matrix. The nature of the charge compensation process differs from others modified electrodes based on Prussian blue films, where only cations such as K+ participate in the electroneutralization process. In the case of FeTPPZFeCN/PPy hybrid film, the magnitude of the anions’s flux is also dependent on the identity of the anion of the supporting electrolyte.Este trabalho descreve a caracterização espectroscópica por infravermelho e o estudo da dinâmica de compensação de cargas do filme supramolecular FeTPPZFeCN derivado do ligante tetra-2-piridil-1,4-pirazina (TPPZ) com hexacianoferrato, bem como o filme híbrido envolvendo FeTPPZFeCN e uma matriz de polipirrol (PPy). Para o filme supramolecular, foi observado um aumento no fluxo de ânion em solução contendo K+ em relação ao Li+, que parece estar relacionado ao tamanho do raio iônico cristalino do K+. O processo de eletroneutralização é discutido em termos de interação eletrostática entre cátions e centros metálicos na matriz hospedeira. A natureza do processo de compensação de carga difere de outros eletrodos modificados derivados do azul da Prússia, onde somente cátions tais como K+ participam no processo de eletroneutralização. No caso do filme híbrido FeTPPZFeCN/PPy, a magnitude do fluxo de ânions é também dependente da identidade do ânion em diferentes eletrólitos de suporte.FAPESPConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)SP

    Macroporous MnO2 electrodes obtained by template assisted electrodeposition for electrochemical capacitors

    Full text link
    Macroporous MnO2 electrodes prepared by template-assisted electrodeposition using spherical polystyrene colloidal particles are studied. The wettability of such electrodes by a LiClO4 aqueous electrolyte is measured by the contact angle technique. Cyclic voltammetry experiments are performed in order to evaluate the use of these electrodes for electrochemical capacitor applications. The specific capacity obtained is about 60% higher than that obtained for flat MnO2 surfaces showing that, in spite of the wettability being lower, some penetration of the electrolyte into the pores must occur, increasing the electroactive area with respect to the flat electrode. Furthermore, the macroporous electrode showed excellent electrochemical stability, with neither a capacitance decrease nor a loss of morphology, after 1000 cycles

    Conducting polymer- hydrogel blends for electrochemically controlled drug release devices

    Get PDF
    Blends formed by electrochemical polymerization of polypyrrole (PPy) into polyacrylamide (PAAm) hydrogels were used as devices for controlled drug release. The influence of several parameters in the synthesis, such as type of hydrogel matrix and polymerization conditions was studied by using a fractional factorial design. The final goal was to obtain an adequate device for use in controlled release tests, based on electrochemical potential control. For controlled release tests, Safranin was used as model drug and release curves (amount of drug vs. time) have shown that these blends are promising materials for this use. The optimized blends obtained were characterized by cyclic voltammetry and Raman spectroscopy.Blendas formadas pela polimerização eletroquímica de pirrol em matriz de acrilamida (hidrogel) foram utilizadas, neste trabalho, como dispositivos para a liberação controlada de drogas. A influência de vários parâmetros nesta síntese, como tipo de matriz de hidrogel e condições de polimerização, foi estudada empregando-se planejamento fatorial fracionário. O objetivo final consistiu na obtenção de um material adequado para liberação baseada no controle de potencial. Para os testes de liberação foi utilizada Safranina, como substância modelo. As curvas de liberação demonstram a potencialidade do uso de tais dispositivos. Estes dispositivos foram também caracterizados por espectroscopia Raman e voltametria cíclica.FAPESPCNP

    Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles

    Get PDF
    Mechanochemistry is a promising alternative to solution-based protocols across the chemical sciences, enabling different types of chemistries in solvent-free and environmentally benign conditions. The use of mechanical energy to promote physical and chemical transformations has reached a high level of refinement, allowing for the design of sophisticated molecules and nanostructured materials. Among them, the synthesis of noble metal nanoparticles deserves special attention due to their catalytic applications. In this review, we discuss the recent progress on the development of mechanochemical strategies for the controlled synthesis of noble metal nanostructures. We start by covering the fundamentals of different preparation routes, namely top-down and bottom-up approaches. Next, we focus on the key examples of the mechanochemical synthesis of non-supported and supported metal nanoparticles as well as hybrid nanomaterials containing noble metals. In these examples, in addition to the principles and synthesis mechanisms, their performances in catalysis are discussed. Finally, a perspective of the field is given, where we discuss the opportunities for future work and the challenges of mechanochemical synthesis to produce well-defined noble metal nanoparticles.Peer reviewe

    Kinetic and Thermodynamic Studies on the Adsorption of Reactive Red 239 by Carra Sawdust Treated with Formaldehyde

    Get PDF
    In this study, carra sawdust pre-treated with formaldehyde was used to adsorb reactive red 239 (RR239). The effects of several experimental conditions, including the concentration of dye, sorbent dosage, temperature, ionic strength, stirring speed and solution pH, on the kinetics of the adsorption process have been studied, and the experimental data were fitted to pseudo-second-order model. A study of the intra-particle diffusion model indicates that the mechanism of dye adsorption using carra sawdust is rather complex and is most likely a combination of external mass transfer and intra-particle diffusion. The experimental data obtained at equilibrium were analyzed using the Langmuir and Freundlich isotherm models, and the results indicated that at this concentration range, both models can be applied for obtaining the equilibrium parameters. The maximum dye uptake obtained at 298 K was found to be 15.1 mg g(-1). In contrast to the usual systems, the reactive dye studied in the present work is strongly attached to the sawdust even after several washes with water, allowing it to be discarded as a solid waste.FAPESP [2010/08646-9, 2012/02117-0, 2009/53199-3]FAPESPINCT in Bioanalytics (FAPESP) [08/57805-2]INCT in Bioanalytics (FAPESP)CNPq [490116/2007-8]CNP

    Spatially localized electrodeposition of multiple metalsvialight-activated electrochemistry for surface enhanced Raman spectroscopy applications

    Full text link
    Light can be used to address electrochemical reactions on a monolithic semiconducting electrode with spatial and temporal resolution. Herein, such principle was used for the electrodeposition of Au, Ag and Cu nanoparticles on a unique silicon-based electrode. The parallel nature of the process granted manufacturing speed and platforms were applied to discriminate moleculesviamulti-wavelength and multivariate Raman analysis
    corecore