16 research outputs found

    Topical antibiotics as a major contextual hazard toward bacteremia within selective digestive decontamination studies: a meta-analysis

    Get PDF
    BACKGROUND: Among methods for preventing pneumonia and possibly also bacteremia in intensive care unit (ICU) patients, Selective Digestive Decontamination (SDD) appears most effective within randomized concurrent controlled trials (RCCT’s) although more recent trials have been cluster randomized. However, of the SDD components, whether protocolized parenteral antibiotic prophylaxis (PPAP) is required, and whether the topical antibiotic actually presents a contextual hazard, remain unresolved. The objective here is to compare the bacteremia rates and patterns of isolates in SDD-RCCT’s versus the broader evidence base. METHODS: Bacteremia incidence proportion data were extracted from component (control and intervention) groups decanted from studies investigating antibiotic (SDD) or non-antibiotic methods of VAP prevention and summarized using random effects meta-analysis of study and group level data. A reference category of groups derived from purely observational studies without any prevention method under study provided a benchmark incidence. RESULTS: Within SDD RCCTs, the mean bacteremia incidence among concurrent component groups not exposed to PPAP (27 control; 17.1%; 13.1-22.1% and 12 intervention groups; 16.2%; 9.1-27.3%) is double that of the benchmark bacteremia incidence derived from 39 benchmark groups (8.3; 6.8-10.2%) and also 20 control groups from studies of non-antibiotic methods (7.1%; 4.8 – 10.5). There is a selective increase in coagulase negative staphylococci (CNS) but not in Pseudomonas aeruginosa among bacteremia isolates within control groups of SDD-RCCT’s versus benchmark groups with data available. CONCLUSIONS: The topical antibiotic component of SDD presents a major contextual hazard toward bacteremia against which the PPAP component partially mitigates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-014-0714-x) contains supplementary material, which is available to authorized users

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients

    Long-term changes in dysnatremia incidence in the ICU: a shift from hyponatremia to hypernatremia

    Get PDF
    Background: Dysnatremia is associated with adverse outcome in critically ill patients. Changes in patients or treatment strategies may have affected the incidence of dysnatremia over time. We investigated long-term changes in the incidence of dysnatremia and analyzed its association with mortality. Methods: Over a 21-year period (1992-2012), all serum sodium measurements were analyzed retrospectively in two university hospital ICUs, up to day 28 of ICU admission for the presence of dysnatremia. The study period was divided into five periods. All serum sodium measurements were collected from the electronic databases of both ICUs. Serum sodium was measured at the clinical chemistry departments using standard methods. All sodium measurements were categorized in the following categories: 160 mmol/L. Mortality was determined at 90 days after ICU admission. Results: In 80,571 ICU patients, 913,272 serum sodium measurements were analyzed. A striking shift in the pattern of ICU-acquired dysnatremias was observed: The incidence of hyponatremia almost halved (47-25 %, p 155 mmol/L) increased dramatically over the years. On ICU day 10 this incidence was 0.7 % in the 1992-1996 period, compared to 6.3 % in the 2009-2012 period (p < 0.001). More severe dysnatremia was associated with significantly higher mortality throughout the 21-year study period (p < 0.001). Conclusions: In two large Dutch cohorts, we observed a marked shift in the incidence of dysnatremia from hyponatremia to hypernatremia over two decades. As hypernatremia was mostly ICU acquired, this strongly suggests changes in treatment as underlying causes. This shift may be related to the increased use of sodium-containing infusions, diuretics, and hydrocortisone. As ICU-acquired hypernatremia is largely iatrogenic, it should be-to an important extent-preventable, and its incidence may be considered as an indicator of quality of care. Strategies to prevent hypernatremia deserve more emphasis; therefore, we recommend that further study should be focused on interventions to prevent the occurrence of dysnatremias during ICU stay

    Dynamics of colistin and tobramycin resistance among Enterobacter cloacae during prolonged use of selective decontamination of the digestive tract

    No full text
    Background A high prevalence of colistin resistance among E. cloacae isolates in two intensive care units (ICU) (of 16 and 6 beds) using selective digestive decontamination (SDD) since 1990 instigated a retrospective and prospective investigation to quantify the role of clonal transmission. SDD is topical application of colistin and tobramycin and systemic use of cefotaxime during the first days of ICU-admission. Methods Multi-resistant E. cloacae (MREb) was defined as ESBL production and/or tobramycin non-susceptibility and/or colistin non-susceptibility. Incidence of acquisition and prevalence of carriage with MREb was determined from microbiological culture results. Results Colistin-resistant E. cloacae was first detected in November 2009 and carriage was demonstrated in 141 patients until October 2014. Mean incidence of MREb acquisition was 4.61 and 1.86 per 1000 days at risk in ICUs 1 and 2, respectively, and the mean monthly prevalence of MREb in both ICUs was 7.0 and 3.1%, respectively, without a discernible trend in time. Conversion rates from carriage of colistin-susceptible to resistant E. cloacae were 0.20 and 0.13 per 1000 patient days, respectively. Whole genome sequencing of 149 isolates revealed eight clusters, with the number of SNPs of the largest two clusters ranging between 0 and 116 for cluster 1 (n = 49 isolates), and 0 and 27 for cluster 2 (n = 36 isolates), among isolates derived between 2009 and 2014. Conclusions This study demonstrates a stable low-level endemicity of MREb in two Dutch ICUs with prolonged use of SDD, which was characterized by the persistent presence of two clusters, suggesting incidental clonal transmission
    corecore