229 research outputs found

    Interaction between Crustal-Scale Darcy and Hydrofracture Fluid Transport: A Numerical Study

    Get PDF
    Crustal-scale fluid flow can be regarded as a bimodal transport mechanism. At low hydraulic head gradients, fluid flow through rock porosity is slow and can be described as diffusional. Structures such as hydraulic breccias and hydrothermal veins both form when fluid velocities and pressures are high, which can be achieved by localized fluid transport in space and time, via hydrofractures. Hydrofracture propagation and simultaneous fluid flow can be regarded as a 'ballistic' transport mechanism, which is activated when transport by diffusion alone is insufficient to release the local fluid overpressure. The activation of a ballistic system locally reduces the driving force, through allowing the escape of fluid. We use a numerical model to investigate the properties of the two transport modes in general and the transition between them in particular. We developed a numerical model in order to study patterns that result from bimodal transport. When hydrofractures are activated due to low permeability relative to fluid flux, many hydrofractures form that do not extend through the whole system. These abundant hydrofractures follow a power-law size distribution. A Hurst factor of ~0.9 indicates that the system self-organizes. The abundant small-scale hydrofractures organize the formation of large-scale hydrofractures that ascend through the whole system and drain fluids in large bursts. As the relative contribution of porous flow increases, escaping fluid bursts become less frequent, but more regular in time and larger in volume. We propose that metamorphic rocks with abundant veins, such as in the Kodiak accretionary prism (Alaska) and Otago schists (New Zealand), represent regions with abundant hydrofractures near the fluid source, while hydrothermal breccias are formed by the large fluid bursts that can ascend the crust to shallower levels

    The ephemeral development of C′ shear bands: A numerical modelling approach

    Full text link
    C′ shear bands are ubiquitous structures in shear zones but their development is poorly understood. Previous research has determined they mostly occur in rocks with a high mechanical strength contrast. Using numerical models of viscoplastic deformation, we studied the effect of the proportion of weak phase and the phase strength contrast on C′ shear band development during simple shearing to a finite strain of 18. We found that C′ shear bands form in models with ≥5% weak phase when there is a moderate or high phase strength contrast, and they occur in all models with weak phase proportions ≥15%. Contrary to previous research, we find that C′ shear bands form when layers of weak phase parallel to the shear zone boundary rotate forwards. This occurs due to mechanical instabilities that are a result of heterogeneous distributions of stress and strain rate. C′ shear bands form on planes of low strain rate and stress, and not in sites of maximum strain rate as has previously been suggested. C′ shear bands are ephemeral and they either rotate backwards to the C plane once they are inactive or rotate into the field of shortening and thicken to form X- and triangle-shaped structures

    Shear localisation in anisotropic, non-linear viscous materials that develop a CPO: A numerical study

    Get PDF
    Localisation of ductile deformation in rocks is commonly found at all scales from crustal shear zones down to grain scale shear bands. Of the various mechanisms for localisation, mechanical anisotropy has received relatively little attention, especially in numerical modelling. Mechanical anisotropy can be due to dislocation creep of minerals (e.g. ice or mica) and/or layering in rocks (e.g. bedding, cleavage). We simulated simple-shear deformation of a locally anisotropic, single-phase power-law rheology material up to shear strain of five. Localisation of shear rate in narrow shear bands occurs, depending on the magnitude of anisotropy and the stress exponent. At high anisotropy values, strain-rate frequency distributions become approximately log-normal with heavy, exponential tails. Localisation due to anisotropy is scale-independent and thus provides a single mechanism for a self-organised hierarchy of shear bands and zones from mm-to km-scales. The numerical simulations are compared with the natural example of the Northern Shear Belt at Cap de Creus, NE Spain

    Bivariate genetic modelling of the response to an oral glucose tolerance challenge: A gene x environment interaction approach

    Get PDF
    AIMS/HYPOTHESIS: Twin and family studies have shown the importance of genetic factors influencing fasting and 2 h glucose and insulin levels. However, the genetics of the physiological response to a glucose load has not been thoroughly investigated. METHODS: We studied 580 monozygotic and 1,937 dizygotic British female twins from the Twins UK Registry. The effects of genetic and environmental factors on fasting and 2 h glucose and insulin levels were estimated using univariate genetic modelling. Bivariate model fitting was used to investigate the glucose and insulin responses to a glucose load, i.e. an OGTT. RESULTS: The genetic effect on fasting and 2 h glucose and insulin levels ranged between 40% and 56% after adjustment for age and BMI. Exposure to a glucose load resulted in the emergence of novel genetic effects on 2 h glucose independent of the fasting level, accounting for about 55% of its heritability. For 2 h insulin, the effect of the same genes that already influenced fasting insulin was amplified by about 30%. CONCLUSIONS/INTERPRETATION: Exposure to a glucose challenge uncovers new genetic variance for glucose and amplifies the effects of genes that already influence the fasting insulin level. Finding the genes acting on 2 h glucose independently of fasting glucose may offer new aetiological insight into the risk of cardiovascular events and death from all causes

    SBP-domain transcription factors as possible effectors of cryptochrome-mediated blue light signalling in the moss Physcomitrella patens

    Get PDF
    Cryptochromes are blue light absorbing photoreceptors found in many organisms and involved in numerous developmental processes. At least two highly similar cryptochromes are known to affect branching during gametophytic development in the moss Physcomitrella patens. We uncovered a relationship between these cryptochromes and the expression of particular members of the SBP-box genes, a plant specific transcription factor family. Transcript levels of the respective moss SBP-box genes, all belonging to the LG1-subfamily, were found to be dependent, albeit not exclusively, on blue light. Moreover, disruptant lines generated for two moss representatives of this SBP-box gene subfamily, both showed enhanced caulonema side branch formation, a phenotype opposite to that of the ppcry1a/1b double disruptant line. In this report we show that PpCRY1a and PpCRY1b act negatively on the transcript levels of several related moss SBP-box genes and that at least PpSBP1 and PpSBP4 act as negative regulators of side branch formation

    A genetic analysis of ambulatory cardiorespiratory coupling.

    Get PDF
    This study assessed the heritability of ambulatory heart period, respiratory sinus arrhythmia (RSA), and respiration rate and tested the hypothesis that the well-established correlation between these variables is determined by common genetic factors. In 780 healthy twins and siblings, 24-h ambulatory recordings of ECG and thorax impedance were made. Genetic analyses showed considerable heritability for heart period (37%-48%), RSA (40%-55%), and respiration rate (27%-81%) at all daily periods. Significant genetic correlations were found throughout. Common genes explained large portions of the covariance between heart period and RSA and between respiration rate and RSA. During the afternoon and night, the covariance between respiration rate and RSA was completely determined by common genes. This overlap in genes can be exploited to increase the power of linkage studies to detect genetic variation influencing cardiovascular disease risk. Copyright © 2005 Society for Psychophysiological Research

    Effects of variation in posture and respiration on RSA and pre-ejection period

    Get PDF
    The extent to which variation in posture and respiration can confound pre-ejection period and respiratory sinus arrhythmia (RSA) as indices of cardiac sympatho-vagal activity was examined. Within-subjects changes in these measures were assessed in 36 subjects during different postures and (paced) respiratory frequencies. Changes from supine to sitting to standing led to reduced RSA values and longer pre-ejection periods, reflecting the known decrease in vagal but not the increase of sympathetic activity. Multilevel path analysis showed that within-subjects changes in sympatho-vagal balance were faithfully reflected by changes in interbeat interval, but imperfectly by changes in RSA and pre-ejection period. It was concluded that pre-ejection period should be stratified for posture and RSA for respiratory frequency to reliably index changes in sympatho-vagal balance when these factors are prone to change (e.g., during 24-h ambulatory recording). Copyright © 2005 Society for Psychophysiological Research

    Childhood abuse v. neglect and risk for major psychiatric disorders

    Get PDF
    Background. Childhood maltreatment (CM) is a strong risk factor for psychiatric disorders but serves in its current definitions as an umbrella for various fundamentally different childhood experiences. As first step toward a more refined analysis of the impact of CM, our objective is to revisit the relation of abuse and neglect, major subtypes of CM, with symptoms across disorders.Methods. Three longitudinal studies of major depressive disorder (MDD, N = 1240), bipolar disorder (BD, N = 1339), and schizophrenia (SCZ, N = 577), each including controls (N = 881), were analyzed. Multivariate regression models were used to examine the relation between exposure to abuse, neglect, or their combination to the odds for MDD, BD, SCZ, and symptoms across disorders. Bidirectional Mendelian randomization (MR) was used to probe causality, using genetic instruments of abuse and neglect derived from UK Biobank data (N = 143 473).Results. Abuse was the stronger risk factor for SCZ (OR 3.51, 95% CI 2.17-5.67) and neglect for BD (OR 2.69, 95% CI 2.09-3.46). Combined CM was related to increased risk exceeding additive effects of abuse and neglect for MDD (RERI = 1.4) and BD (RERI = 1.1). Across disorders, abuse was associated with hallucinations (OR 2.16, 95% CI 1.55-3.01) and suicide attempts (OR 2.16, 95% CI 1.55-3.01) whereas neglect was associated with agitation (OR 1.24, 95% CI 1.02-1.51) and reduced need for sleep (OR 1.64, 95% CI 1.08-2.48). MR analyses were consistent with a bidirectional causal effect of abuse with SCZ (IVWforward = 0.13, 95% CI 0.01-0.24).Conclusions. Childhood abuse and neglect are associated with different risks to psychiatric symptoms and disorders. Unraveling the origin of these differences may advance understanding of disease etiology and ultimately facilitate development of improved personalized treatment strategies

    Tyrosine kinase signalling in breast cancer: ErbB family receptor tyrosine kinases

    Get PDF
    ERBB family receptor tyrosine kinases are overexpressed in a significant subset of breast cancers. One of these receptors, HER2/neu, or ErbB-2, is the target for a new rational therapeutic antibody, Herceptin. Other inhibitors that target this receptor, and another family member, the epidermal growth factor (EGF) receptor, are moving into clinical trials. Both of these receptors are sometimes overexpressed in breast cancer, and still subject to regulation by hormones and other physiological regulators. Optimal use of therapeutics targeting these receptors will require consideration of the several modes of regulation of these receptors and their interactions with steroid receptors
    corecore