95 research outputs found
Clear cell chondrosarcoma in Von Hippel-Lindau disease
A diagnosis of clear cell chondrosarcoma of the ulna was made in a patient with Von Hippel-Lindau disease (VHL). After surgery, genetic analysis of the tumor tissue showed loss of heterozygosity at the VHL gene locus. Immunohistochemical analysis confirmed loss of expression of the VHL protein in the tumor cells. In addition, abundant Cyclin D1 expression in the tumor was observed. Chondrosarcoma has been described before in a VHL patient and VHL protein expression has been correlated to tumor grade in a series of sporadic chondrosarcomas. In this report, we show that clear cell chondrosarcoma may be a rare but canonical VHL manifestation through a cell-autonomous mechanism involving somatic loss-of-heterozygosity of the VHL tumor suppressor gene. We discuss the relevance of this observation with regard to the pathogenesis of clear cell chondrosarcoma in the context of VHL
Nodular Fasciitis With Malignant Morphology and a COL6A2-USP6 Fusion: A Case Report (of a 10-Year-old Boy)
Nodular fasciitis is usually a benign lesion genetically characterized by ubiquitin-specific protease 6 (USP6) rearrangements. We present a case of a 10-year-old boy with a 1.5-week history of a painless mass on the right chest wall, which was excised. A histomorphologically malignant tumor with pronounced pleomorphism, atypical mitotic figures, and a myoid immunophenotype was observed. The methylation profile was consistent with nodular fasciitis and fluorescence in situ hybridization confirmed USP6 rearrangement. Using Archer Fusion Plex (Sarcoma Panel) and RNA sequencing, a collagen, type VI, alpha 2 (COL6A2)-USP6 gene fusion was subsequently identified. Furthermore, DNA clustering analysis also showed a match with nodular fasciitis. During the follow-up of 22 months, no recurrence or metastasis occurred. In conclusion, we describe a clinically benign, histomorphologically malignant mesenchymal neoplasm with a myoid immunophenotype, and a genetic and epigenetic profile consistent with nodular fasciitis. In such cases, molecular analysis is a useful adjunct to avoid unnecessary overtreatment
RT-PCR assay to detect FGFR3::TACC3 fusions in formalin-fixed, paraffin-embedded glioblastoma samples.
BACKGROUND: One targeted treatment option for isocitrate dehydrogenase ( IDH)-wild-type glioblastoma focuses on tumors with fibroblast growth factor receptor 3::transforming acidic coiled-coil-containing protein 3 ( FGFR3::TACC3) fusions. FGFR3::TACC3 fusion detection can be challenging, as targeted RNA next-generation sequencing (NGS) is not routinely performed, and immunohistochemistry is an imperfect surrogate marker. Fusion status can be determined using reverse transcription polymerase chain reaction (RT-PCR) on fresh frozen (FF) material, but sometimes only formalin-fixed, paraffin-embedded (FFPE) tissue is available. AIM: To develop an RT-PCR assay to determine FGFR3::TACC3 status in FFPE glioblastoma samples. METHODS: Twelve tissue microarrays with 353 historical glioblastoma samples were immunohistochemically stained for FGFR3. Samples with overexpression of FGFR3 ( n = 13) were subjected to FGFR3::TACC3 RT-PCR on FFPE, using 5 primer sets for the detection of 5 common fusion variants. Fusion-negative samples were additionally analyzed with NGS ( n = 6), FGFR3 Fluorescence In Situ Hybridization ( n = 6), and RNA sequencing ( n = 5). RESULTS: Using RT-PCR on FFPE material of the 13 samples with FGFR3 overexpression, we detected an FGFR3::TACC3 fusion in 7 samples, covering 3 different fusion variants. For 5 of these FF was available, and the presence of the fusion was confirmed through RT-PCR on FF. With RNA sequencing, 1 additional sample was found to harbor an FGFR3::TACC3 fusion (variant not covered by current RT-PCR for FFPE). The frequency of FGFR3::TACC3 fusion in this cohort was 9/353 (2.5%). CONCLUSIONS: RT-PCR for FGFR3::TACC3 fusions can successfully be performed on FFPE material, with a specificity of 100% and (due to limited primer sets) a sensitivity of 83.3%. This assay allows for the identification of potential targeted treatment options when only formalin-fixed tissue is available
LKB1 as the ghostwriter of crypt history
Familial cancer syndromes present rare insights into malignant tumor development. The molecular background of polyp formation and the cancer prone state in Peutz-Jeghers syndrome remain enigmatic to this day. Previously, we proposed that Peutz-Jeghers polyps are not pre-malignant lesions, but an epiphenomenon to the malignant condition. However, Peutz-Jeghers polyp formation and the cancer-prone state must both be accounted for by the same molecular mechanism. Our contribution focuses on the histopathology of the characteristic Peutz-Jeghers polyp and recent research on stem cell dynamics and how these concepts relate to Peutz-Jeghers polyposis. We discuss a protracted clonal evolution scenario in Peutz-Jeghers syndrome due to a germline LKB1 mutation. Peutz-Jeghers polyp formation and malignant transformation are separately mediated through the same molecular mechanism played out on different timescales. Thus, a single mechanism accounts for the development of benign Peutz-Jeghers polyps and for malignant transformation in Peutz-Jeghers syndrome
Longitudinal characteristics of T2-FLAIR mismatch in IDH-mutant astrocytomas: Relation to grade, histopathology, and overall survival in the GLASS-NL cohort.
BACKGROUND: The T2-FLAIR mismatch sign is defined by signal loss of the T2-weighted hyperintense area with Fluid-Attenuated Inversion Recovery (FLAIR) on magnetic resonance imaging, causing a hypointense region on FLAIR. It is a highly specific diagnostic marker for IDH-mutant astrocytoma and is postulated to be caused by intercellular microcystic change in the tumor tissue. However, not all IDH-mutant astrocytomas show this mismatch sign and some show the phenomenon in only part of the lesion. The aim of the study is to determine whether the T2-FLAIR mismatch phenomenon has any prognostic value beyond initial noninvasive molecular diagnosis.
METHODS: Patients initially diagnosed with histologically lower-grade (2 or 3) IDH-mutant astrocytoma and with at least 2 surgical resections were included in the GLASS-NL cohort. T2-FLAIR mismatch was determined, and the growth pattern of the recurrent tumor immediately before the second resection was annotated as invasive or expansive. The relation between the T2-FLAIR mismatch sign and tumor grade, microcystic change, overall survival (OS), and other clinical parameters was investigated both at first and second resection.
RESULTS: The T2-FLAIR mismatch sign was significantly related to Grade 2 (80% vs 51%), longer post-resection median OS (8.3 vs 5.2 years), expansive growth, and lower age at second resection. At first resection, no relation was found between the mismatch sign and OS. Microcystic change was associated with areas of T2-FLAIR mismatch.
CONCLUSIONS: T2-FLAIR mismatch in IDH-mutant astrocytomas is correlated with microcystic change in the tumor tissue, favorable prognosis, and Grade 2 tumors at the time of second resection
One-fits-all pretreatment protocol facilitating Fluorescence in Situ Hybridization on formalin-fixed paraffin-embedded, fresh frozen and cytological slides
Background: The Fluorescence In Situ Hybridization (FISH) technique is a very useful tool for diagnostic and prognostic purposes in molecular pathology. However, clinical testing on patient tissue is challenging due to variables of tissue processing that can influence the quality of the results. This emphasizes the necessity of a standardized FISH protocol with a high hybridization efficiency. We present a pretreatment protocol that is easy, reproducible, cost-effective, and facilitates FISH on all types of patient material simultaneously with good quality results. During validation, FISH analysis was performed simultaneously on formalin-fixed paraffin-embedded, fresh frozen and cytological patient material in combination with commercial probes using our optimized one-fits-all pretreatment protocol. An optimally processed sample is characterized by strong specific signals, intact nuclear membranes, non-disturbing autofluorescence and a homogeneous DAPI staining. Results: In our retrospective cohort of 3881 patient samples, overall 93% of the FISH samples displayed good quality results leading to a patient diagnosis. All FISH were assessed on quality aspects such as adequacy and consistency of signal strength (brightness), lack of background and / or cross-hybridization signals, and additionally the presence of appropriate control signals were evaluated to assure probe accuracy. In our analysis 38 different FISH probes from 3 commercial manufacturers were used (Cytocell, Vysis and ZytoLight). The majority of the patients in this cohort displayed good signal quality and barely non-specific background fluorescence on all tissue types independent of which commercial probe was used. Conclusion: The optimized one-fits-all FISH method is robust, reliable and reproducible to deliver an accurate result for patient diagnostics in a lean workflow and cost-effective manner. This protocol can be used for widespread application in cancer and non-cancer diagnostics and research
Digital pathology in the time of corona
The 2020 COVID-19 crisis has had and will have many implications for healthcare, including pathology. Rising number of infections create staffing shortages and other hospital departments might require pathology employees to fill more urgent positions. Furthermore, lockdown measures and social distancing cause many people to work from home. During this crisis, it became clearer than ever what an asset digital diagnostics is to keep pathologists, residents, molecular biologists and pathology assistants engaged in the diagnostic process, allowing social distancing and a 'need to be there' on-the-premises policy, while working effectively from home. This paper provides an overview of our way of working during the 2020 COVID-19 crisis with emphasis on the virtues of digital pathology
Comparison of NTRK fusion detection methods in microsatellite-instability-high metastatic colorectal cancer
Tropomyosin receptor kinase (TRK) inhibitors have been approved for metastatic solid tumors harboring NTRK fusions, but the detection of NTRK fusions is challenging. International guidelines recommend pan-TRK immunohistochemistry (IHC) screening followed by next generation sequencing (NGS) in tumor types with low prevalence of NTRK fusions, including metastatic colorectal cancer (mCRC). RNA-based NGS is preferred, but is expensive, time-consuming, and extracting good-quality RNA from FFPE tissue is challenging. Alternatives in daily clinical practice are warranted. We assessed the diagnostic performance of RNA-NGS, FFPE-targeted locus capture (FFPE-TLC), fluorescence in situ hybridization (FISH), and the 5'/3' imbalance quantitative RT-PCR (qRT-PCR) after IHC screening in 268 patients with microsatellite-instability-high mCRC, the subgroup in which NTRK fusions are most prevalent (1-5%). A consensus result was determined after review of all assay results. In 16 IHC positive tumors, 10 NTRK fusions were detected. In 33 IHC negative samples, no additional transcribed NTRK fusions were found, underscoring the high sensitivity of IHC. Sensitivity of RNA-NGS, FFPE-TLC, FISH, and qRT-PCR was 90%, 90%, 78%, and 100%, respectively. Specificity was 100% for all assays. Robustness, defined as the percentage of samples that provided an interpretable result in the first run, was 100% for FFPE-TLC, yet more limited for RNA-NGS (85%), FISH (70%), and qRT-PCR (70%). Overall, we do not recommend FISH for the detection of NTRK fusions in mCRC due to its low sensitivity and limited robustness. We conclude that RNA-NGS, FFPE-TLC, and qRT-PCR are appropriate assays for NTRK fusion detection, after enrichment with pan-TRK IHC, in routine clinical practice
Comparative Performance Analysis of IdyllaTM and ArcherTM in the Detection of Gene Fusions in Spitzoid Melanocytic Tumors
Melanocytic neoplasms with spitzoid histomorphology are often difficult to classify without identifying genetic drivers such as kinase fusions. Traditional diagnostic methods, such as immunohistochemistry, can yield inconclusive results, and advanced techniques such as the Archer fusion assay are often inaccessible and costly. The Idylla GeneFusion Assay might offer a rapid and cost-effective alternative. This study compared Idylla and Archer in identifying ALK, pan-NTRK, RET, and ROS1 gene fusions. Of the 147 samples where next-generation sequencing did not detect genetic drivers, 89 (60.5%) meeting the tissue requirements were further analyzed using Idylla (Cohort A). Idylla demonstrated a sensitivity of 75% and a specificity of 100% in detecting these fusions. Additionally, among 27 randomly selected cases (Cohort B) that failed to meet the inclusion criteria, Idylla maintained the same levels of sensitivity and specificity. Our findings also show that Idylla can be effectively conducted with isolated RNA, broadening its applicability beyond tissue samples. Although the Idylla assay may not replace more comprehensive molecular assays such as Archer, it could serve as a valuable initial screening tool in diagnosing spitzoid melanocytic tumors
Multicenter Comparison of Molecular Tumor Boards in The Netherlands:Definition, Composition, Methods, and Targeted Therapy Recommendations
Background Molecular tumor boards (MTBs) provide rational, genomics-driven, patient-tailored treatment recommendations. Worldwide, MTBs differ in terms of scope, composition, methods, and recommendations. This study aimed to assess differences in methods and agreement in treatment recommendations among MTBs from tertiary cancer referral centers in The Netherlands. Materials and Methods MTBs from all tertiary cancer referral centers in The Netherlands were invited to participate. A survey assessing scope, value, logistics, composition, decision-making method, reporting, and registration of the MTBs was completed through on-site interviews with members from each MTB. Targeted therapy recommendations were compared using 10 anonymized cases. Participating MTBs were asked to provide a treatment recommendation in accordance with their own methods. Agreement was based on which molecular alteration(s) was considered actionable with the next line of targeted therapy. Results Interviews with 24 members of eight MTBs revealed that all participating MTBs focused on rare or complex mutational cancer profiles, operated independently of cancer type-specific multidisciplinary teams, and consisted of at least (thoracic and/or medical) oncologists, pathologists, and clinical scientists in molecular pathology. Differences were the types of cancer discussed and the methods used to achieve a recommendation. Nevertheless, agreement among MTB recommendations, based on identified actionable molecular alteration(s), was high for the 10 evaluated cases (86%). Conclusion MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational cancer profiles. We propose a "Dutch MTB model" for an optimal, collaborative, and nationally aligned MTB workflow. Implications for Practice Interpretation of genomic analyses for optimal choice of target therapy for patients with cancer is becoming increasingly complex. A molecular tumor board (MTB) supports oncologists in rationalizing therapy options. However, there is no consensus on the most optimal setup for an MTB, which can affect the quality of recommendations. This study reveals that the eight MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational profiles. The Dutch MTB model is based on a collaborative and nationally aligned workflow with interinstitutional collaboration and data sharing
- …