2,541 research outputs found
Naval Vessel Traffic Services
Vessel traffic services (VTSs) ensure the safe and efficient handling of traffic on busy waterways like the English Channel and the approaches to New York. This technique, wherein electronic sensors and communication systems are used to manage traffic actively, can also be used in maritime security operations (MSOs) to enhance safety in areas with risks related to asymmetric threats.1 Nowadays a limited form of VTS is deployed for MSO situated in international waters. These services, provided by naval cooperation and guidance for shipping (NCAGS) organizations, are focused on building maritime domain awareness (MDA) and providing naval-related safety information to merchant shipping
Spin-mediated dissipation and frequency shifts of a cantilever at milliKelvin temperatures
We measure the dissipation and frequency shift of a magnetically coupled
cantilever in the vicinity of a silicon chip, down to mK. The dissipation
and frequency shift originates from the interaction with the unpaired
electrons, associated with the dangling bonds in the native oxide layer of the
silicon, which form a two dimensional system of electron spins. We approach the
sample with a m-diameter magnetic particle attached to an ultrasoft
cantilever, and measure the frequency shift and quality factor as a function of
temperature and the distance. Using a recent theoretical analysis [J. M. de
Voogd et al., arXiv:1508.07972 (2015)] of the dynamics of a system consisting
of a spin and a magnetic resonator, we are able to fit the data and extract the
relaxation time ms and spin density
spins per nm. Our analysis shows that at temperatures mK magnetic
dissipation is an important source of non-contact friction.Comment: 5 pages, 3 figure
Finite temperature molecular dynamics study of unstable stacking fault free energies in silicon
We calculate the free energies of unstable stacking fault (USF)
configurations on the glide and shuffle slip planes in silicon as a function of
temperature, using the recently developed Environment Dependent Interatomic
Potential (EDIP). We employ the molecular dynamics (MD) adiabatic switching
method with appropriate periodic boundary conditions and restrictions to atomic
motion that guarantee stability and include volume relaxation of the USF
configurations perpendicular to the slip plane. Our MD results using the EDIP
model agree fairly well with earlier first-principles estimates for the
transition from shuffle to glide plane dominance as a function of temperature.
We use these results to make contact to brittle-ductile transition models.Comment: 6 pages revtex, 4 figs, 16 refs, to appear in Phys. Rev.
Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry
Hydrodeoxygenated pyrolysis oils (HDO) are considered promising renewable liquid energy carriers. To gain insights in the various reaction pathways taking place during the hydrodeoxygenation reaction of pyrolysis oil, two-dimensional gas chromatography with time-of-flight mass spectrometric analyses (2D-GC-TOF-MS) was applied on the feedstock and product oil. Chromatographic parameters like injection temperature and column choice of the D-1-D-2 ensemble are discussed. Fractionation of the oils by hexane extraction was applied to show the distribution of analytes over the phases. Some 1000 and 2000 components in the pyrolysis and HDO oil, respectively could be identified and classified. The TOF-MS detection considerably improved the understanding of the molecular distribution over the D-1-D-2 retention time fields in the contour plot, in order to classify the analytes in functional groups. By group-type classification of the main components (>0.3% relative area), it was possible to characterize the oils by 250 and 350 analytes, respectively pyrolysis oil and HDO oil, describing 75% of the chromatographable fraction. The 2D-GC-TOF-MS method showed to be a useful and fast technique to determine the composition of (upgraded) pyrolysis oil and is potentially a very useful tool for exploratory catalyst research and kinetic studies. The 2D-GC-TOF-MS technique is not only useful for the chemical study as such, but also provides the basic knowledge for method transfer to a 2D-GC-FID (flame ionization detector) application. (C) 2008 Elsevier B.V. All rights reserved
Population-based mammography screening below age 50: balancing radiation-induced vs prevented breast cancer deaths
Introduction:Exposure to ionizing radiation at mammography screening may cause breast cancer. Because the radiation risk increases with lower exposure age, advancing the lower age limit may affect the balance between screening benefits and risks. The present study explores the benefit-risk ratio of screening before age 50.Methods:The benefits of biennial mammography screening, starting at various ages between 40 and 50, and continuing up to age 74 were examined using micro-simulation. In contrast with previous studies that commonly used excess relative risk models, we assessed the radiation risks using the latest BEIR-VII excess abso
Analysis of cyt0kine gene expression in stimulated T cells of small children by semi-quantitative PCR
Only limited amounts of peripheral blood samples can be obtained from small children. Therefore, a polymerase chain reaction (PCR) aided analysis of cytokine gene expression by PBMC or T cells is a valuable tool. We present a combination of procedures to obtain an accurate estimation of the expression of the cytokines IL-4 and IFN-γ. This can be performed on T cells purified from blood samples of up to 5 ml in volume from children aged 0–4 years with allergic asthma and atopic dermatitis. This procedure includes multiple sampling of PCR products to determine the linear phase of the PCR; inter-experiment correction using a helper T-cell clone, expressing both IL-4 and IFN-γ; interpatient correction by comparing the expression of a housekeeping gene (HPRT); and finally the development of specific software to analyse densitometric data obtained by scanning photographs of agarose gels, separating PCR products. In this way it is possible to study cytokine gene expression from a very small amount of material
How to detect late-onset inborn errors of metabolism in patients with movement disorders - A modern diagnostic approach
We propose a modern approach to assist clinicians to recognize and diagnose inborn errors of metabolism (IEMs) in adolescents and adults that present with a movement disorder. IEMs presenting in adults are still largely unexplored. These disorders receive little attention in neurological training and daily practice, and are considered complicated by many neurologists. Adult-onset presentations of IEMs differ from childhood-onset phenotypes, which may lead to considerable diagnostic delay. The identification of adult-onset phenotypes at the earliest stage of the disease is important, since early treatment may prevent or lessen further brain damage. Our approach is based on a systematic review of all papers that concerned movement disorders due to an IEM in patients of 16 years or older. Detailed clinical phenotyping is the diagnostic cornerstone of the approach. An underlying IEM should be suspected in particular in patients with more than one movement disorder, or in patients with additional neurological, psychiatric, or systemic manifestations. As IEMs are all genetic disorders, we recommend next-generation sequencing (NGS) as the first diagnostic approach to confirm an IEM. Biochemical tests remain the first choice in acute-onset or treatable IEMs that require rapid diagnosis, or to confirm the metabolic diagnosis after NGS results. With the use of careful and systematic clinical phenotyping combined with novel diagnostic approaches such as NGS, the diagnostic yield of late-onset IEMs will increase, in particular in patients with mild or unusual phenotypes.</p
- …