146 research outputs found

    Porosities of building limestones: using the solid density to assess data quality

    Get PDF
    A good knowledge of the volume-fraction porosity is essential in any technical work on porous materials. In construction materials the porosity is commonly measured by the Archimedes buoyancy method, from which the bulk density of the test specimen is also obtained. The porosity and the bulk density together fix the solid density of the specimen, as only two of the three quantities are independent. The solid density, although rarely discussed, is determined by the mineralogy of the specimen, and therefore can provide a valuable check on the accuracy of porosity and bulk density measurements. Our analysis of published data on calcitic limestones shows that the solid density is generally close to the ideal crystallographic density of calcite. Small deviations can often be traced to variations in mineral composition. However some published porosity–density data are inconsistent with the known mineralogy. Deviations which cannot be ascribed to composition may be assumed to arise from measurement errors. We show the value of using the solid density as a quality check on the measured porosity. We recommend that the solid density should always be calculated for this purpose when the Archimedes method is used. This check can be useful also when porosities are measured by helium pycnometry or by mercury intrusion porosimetry

    First case of Anaplasma platys infection in a dog from Croatia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is known that <it>Anaplasma (A.) platys</it>, the causative agent of infectious canine cyclic thrombocytopenia, is endemic in countries of the Mediterranean basin. However, few reports are available from the Balkans. This case report describes a dog, which was imported from Croatia to Germany in May 2010. One month later the dog was presented to a local veterinarian in Germany due to intermittent/recurrent diarrhoea. Diagnostic tests were performed to identify infections caused by <it>Anaplasma </it>spp., <it>Ehrlichia </it>spp., <it>Hepatozoon canis, Babesia </it>spp., <it>Leishmania </it>spp., <it>Borrelia burgdorferi </it>and/or <it>Dirofilaria immitis</it>.</p> <p>Findings</p> <p>Haematological examination of a blood smear revealed basophilic inclusions in thrombocytes, which were confirmed as <it>A. platys </it>with a species-specific real-time PCR. Additionally, an infection with <it>Babesia (B.) vogeli </it>was also detected (PCR and serology). No specific antibodies against <it>Anaplasma </it>antigen were detectable. Although the dog showed no specific clinical signs, thrombocytopenia, anaemia and elevated C-reactive protein (CRP) were observed. Sequencing of a 1,348-bp partial ribosomal RNA gene revealed highest homology to <it>A. platys </it>sequences from Thailand, Japan and France.</p> <p>Conclusions</p> <p><it>A. platys </it>was detected for first time in a dog imported from Croatia. As the dog was also co-infected by <it>B. vogeli</it>, unique serological and haematological findings were recorded. Thrombocytopenia, anaemia and elevated values of C-reactive protein were the laboratory test abnormalities observed in this case. <it>A. platys </it>infections should be considered in dogs coming from Croatia and adjacent regions.</p

    Stable Isotope Evidence for Dietary Overlap between Alien and Native Gastropods in Coastal Lakes of Northern KwaZulu-Natal, South Africa

    Get PDF
    Tarebia granifera (Lamarck, 1822) is originally from South-East Asia, but has been introduced and become invasive in many tropical and subtropical parts of the world. In South Africa, T. granifera is rapidly invading an increasing number of coastal lakes and estuaries, often reaching very high population densities and dominating shallow water benthic invertebrate assemblages. An assessment of the feeding dynamics of T. granifera has raised questions about potential ecological impacts, specifically in terms of its dietary overlap with native gastropods.A stable isotope mixing model was used together with gut content analysis to estimate the diet of T. granifera and native gastropod populations in three different coastal lakes. Population density, available biomass of food and salinity were measured along transects placed over T. granifera patches. An index of isotopic (stable isotopes) dietary overlap (IDO, %) aided in interpreting interactions between gastropods. The diet of T. granifera was variable, including contributions from microphytobenthos, filamentous algae (Cladophora sp.), detritus and sedimentary organic matter. IDO was significant (>60%) between T. granifera and each of the following gastropods: Haminoea natalensis (Krauss, 1848), Bulinus natalensis (KĂŒster, 1841) and Melanoides tuberculata (MĂŒller, 1774). However, food did not appear to be limiting. Salinity influenced gastropod spatial overlap. Tarebia granifera may only displace native gastropods, such as Assiminea cf. ovata (Krauss, 1848), under salinity conditions below 20. Ecosystem-level impacts are also discussed.The generalist diet of T. granifera may certainly contribute to its successful establishment. However, although competition for resources may take place under certain salinity conditions and if food is limiting, there appear to be other mechanisms at work, through which T. granifera displaces native gastropods. Complementary stable isotope and gut content analysis can provide helpful ecological insights, contributing to monitoring efforts and guiding further invasive species research

    Language in international business: a review and agenda for future research

    Get PDF
    A fast growing number of studies demonstrates that language diversity influences almost all management decisions in modern multinational corporations. Whereas no doubt remains about the practical importance of language, the empirical investigation and theoretical conceptualization of its complex and multifaceted effects still presents a substantial challenge. To summarize and evaluate the current state of the literature in a coherent picture informing future research, we systematically review 264 articles on language in international business. We scrutinize the geographic distributions of data, evaluate the field’s achievements to date in terms of theories and methodologies, and summarize core findings by individual, group, firm, and country levels of analysis. For each of these dimensions, we then put forward a future research agenda. We encourage scholars to transcend disciplinary boundaries and to draw on, integrate, and test a variety of theories from disciplines such as psychology, linguistics, and neuroscience to gain a more profound understanding of language in international business. We advocate more multi-level studies and cross-national research collaborations and suggest greater attention to potential new data sources and means of analysis

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    The importance of krill predation in the Southern Ocean

    Get PDF

    Stress modulation as a means to improve yeasts for lignocellulose bioconversion

    Get PDF
    The second-generation (2G) fermentation environment for lignocellulose conversion presents unique challenges to the fermentative organism that do not necessarily exist in other industrial fermentations. While extreme osmotic, heat, and nutrient starvation stresses are observed in sugar- and starch-based fermentation environments, additional pre-treatment-derived inhibitor stress, potentially exacerbated by stresses such as pH and product tolerance, exist in the 2G environment. Furthermore, in a consolidated bioprocessing (CBP) context, the organism is also challenged to secrete enzymes that may themselves lead to unfolded protein response and other stresses. This review will discuss responses of the yeast Saccharomyces cerevisiae to 2G-specific stresses and stress modulation strategies that can be followed to improve yeasts for this application. We also explore published –omics data and discuss relevant rational engineering, reverse engineering, and adaptation strategies, with the view of identifying genes or alleles that will make positive contributions to the overall robustness of 2G industrial strains
    • 

    corecore