6 research outputs found

    Pragmatic physiologically-based pharmacokinetic modeling to support clinical implementation of optimized gentamicin dosing in term neonates and infants: proof-of-concept

    Get PDF
    IntroductionModeling and simulation can support dosing recommendations for clinical practice, but a simple framework is missing. In this proof-of-concept study, we aimed to develop neonatal and infant gentamicin dosing guidelines, supported by a pragmatic physiologically-based pharmacokinetic (PBPK) modeling approach and a decision framework for implementation.MethodsAn already existing PBPK model was verified with data of 87 adults, 485 children and 912 neonates, based on visual predictive checks and predicted-to-observed pharmacokinetic (PK) parameter ratios. After acceptance of the model, dosages now recommended by the Dutch Pediatric Formulary (DPF) were simulated, along with several alternative dosing scenarios, aiming for recommended peak (i.e., 8–12 mg/L for neonates and 15–20 mg/L for infants) and trough (i.e., <1 mg/L) levels. We then used a decision framework to weigh benefits and risks for implementation.ResultsThe PBPK model adequately described gentamicin PK. Simulations of current DPF dosages showed that the dosing interval for term neonates up to 6 weeks of age should be extended to 36–48 h to reach trough levels <1 mg/L. For infants, a 7.5 mg/kg/24 h dose will reach adequate peak levels. The benefits of these dose adaptations outweigh remaining uncertainties which can be minimized by routine drug monitoring.ConclusionWe used a PBPK model to show that current DPF dosages for gentamicin in term neonates and infants needed to be optimized. In the context of potential uncertainties, the risk-benefit analysis proved positive; the model-informed dose is ready for clinical implementation

    Pragmatic physiologically-based pharmacokinetic modeling to support clinical implementation of optimized gentamicin dosing in term neonates and infants:proof-of-concept

    Get PDF
    Introduction: Modeling and simulation can support dosing recommendations for clinical practice, but a simple framework is missing. In this proof-of-concept study, we aimed to develop neonatal and infant gentamicin dosing guidelines, supported by a pragmatic physiologically-based pharmacokinetic (PBPK) modeling approach and a decision framework for implementation. Methods: An already existing PBPK model was verified with data of 87 adults, 485 children and 912 neonates, based on visual predictive checks and predicted-to-observed pharmacokinetic (PK) parameter ratios. After acceptance of the model, dosages now recommended by the Dutch Pediatric Formulary (DPF) were simulated, along with several alternative dosing scenarios, aiming for recommended peak (i.e., 8–12 mg/L for neonates and 15–20 mg/L for infants) and trough (i.e., &lt;1 mg/L) levels. We then used a decision framework to weigh benefits and risks for implementation. Results: The PBPK model adequately described gentamicin PK. Simulations of current DPF dosages showed that the dosing interval for term neonates up to 6 weeks of age should be extended to 36–48 h to reach trough levels &lt;1 mg/L. For infants, a 7.5 mg/kg/24 h dose will reach adequate peak levels. The benefits of these dose adaptations outweigh remaining uncertainties which can be minimized by routine drug monitoring. Conclusion: We used a PBPK model to show that current DPF dosages for gentamicin in term neonates and infants needed to be optimized. In the context of potential uncertainties, the risk-benefit analysis proved positive; the model-informed dose is ready for clinical implementation.</p

    Physiologically-Based Pharmacokinetic Modeling for Drug Dosing in Pediatric Patients:A Tutorial for a Pragmatic Approach in Clinical Care

    Get PDF
    It is well-accepted that off-label drug dosing recommendations for pediatric patients should be based on the best available evidence. However, the available traditional evidence is often low. To bridge this gap, physiologically-based pharmacokinetic (PBPK) modeling is a scientifically well-founded tool that can be used to enable model-informed dosing (MID) recommendations in children in clinical practice. In this tutorial, we provide a pragmatic, PBPK-based pediatric modeling workflow. For this approach to be successfully implemented in pediatric clinical practice, a thorough understanding of the model assumptions and limitations is required. More importantly, careful evaluation of an MID approach within the context of overall benefits and the potential risks is crucial. The tutorial is aimed to help modelers, researchers, and clinicians, to effectively use PBPK simulations to support pediatric drug dosing.</p

    Physiologically Based Pharmacokinetic (PBPK) Model-Informed Dosing Guidelines for Pediatric Clinical Care: A Pragmatic Approach for a Special Population

    Get PDF
    Physiologically based pharmacokinetic (PBPK) modeling can be an attractive tool to increase the evidence base of pediatric drug dosing recommendations by making optimal use of existing pharmacokinetic (PK) data. A pragmatic approach of combining available compound models with a virtual pediatric physiology model can be a rational solution to predict PK and hence support dosing guidelines for children in real-life clinical care, when it can also be employed by individuals with little experience in PBPK modeling. This comes within reach as user-friendly PBPK modeling platforms exist and, for many drugs and populations, models are ready for use. We have identified a list of drugs that can serve as a starting point for pragmatic PBPK modeling to address current clinical dosing needs

    Development of Best Evidence Dosing Recommendations for Term and Preterm Neonates (NeoDose Project)

    No full text
    Many drugs are used off-label in neonates which leads to large variation in prescribed drugs and dosages in neonatal intensive care units (NICUs). The NeoDose project aimed to develop best evidence dosing recommendations (DRs) for term and preterm neonates using a three-step approach: 1) drug selection, 2) establishing consensus-based DRs, and 3) establishing best evidence DRs. Methods: The selection of drugs was based on frequency of prescribing, availability of a neonatal DR in the Dutch Pediatric Formulary, and the labeling status. Clinical need, pharmacological diversity, and Working Group Neonatal Pharmacology (WGNP) preferences were also taken into account, using a consensus-based approach. For the second step, we requested local dosing protocols from all ten Dutch NICUs and established consensus-based DRs within the WGNP, consisting of neonatologists, clinical pharmacologists, hospital pharmacists, and researchers. In the third step, the consensus-based DRs were compared with the available literature, using standardized PubMed searches. Results: Fourteen drugs were selected for which the local dosing protocols were collected. These protocols differed mostly in total daily dose, dosing frequency, and/or route of administration. Strikingly, almost none of the dosing protocols of these 14 drugs distinguished between preterm and term neonates. The working group established consensus-based DRs, which after literature review needed modification in 56%, mainly in terms of a dose increase. Finally, we established 37 best evidence DRs, 22 for preterm and 15 for term neonates, representing 19 indications. Conclusion: This project showed the successful three-step approach for the development of DRs for term and preterm neonates

    Lamivudine and Emtricitabine Dosing Proposal for Children with HIV and Chronic Kidney Disease, Supported by Physiologically Based Pharmacokinetic Modelling

    Get PDF
    Dose recommendations for lamivudine or emtricitabine in children with HIV and chronic kidney disease (CKD) are absent or not supported by clinical data. Physiologically based pharmacokinetic (PBPK) models have the potential to facilitate dose selection for these drugs in this population. Existing lamivudine and emtricitabine compound models in Simcyp® (v21) were verified in adult populations with and without CKD and in non-CKD paediatric populations. We developed paediatric CKD population models reflecting subjects with a reduced glomerular filtration and tubular secretion, based on extrapolation from adult CKD population models. These models were verified using ganciclovir as a surrogate compound. Then, lamivudine and emtricitabine dosing strategies were simulated in virtual paediatric CKD populations. The compound and paediatric CKD population models were verified successfully (prediction error within 0.5- to 2-fold). The mean AUC ratios in children (GFR-adjusted dose in CKD population/standard dose in population with normal kidney function) were 1.15 and 1.23 for lamivudine, and 1.20 and 1.30 for emtricitabine, with grade-3- and -4-stage CKD, respectively. With the developed paediatric CKD population PBPK models, GFR-adjusted lamivudine and emtricitabine dosages in children with CKD resulted in adequate drug exposure, supporting paediatric GFR-adjusted dosing. Clinical studies are needed to confirm these findings
    corecore