11,120 research outputs found
Chord Label Personalization through Deep Learning of Integrated Harmonic Interval-based Representations
The increasing accuracy of automatic chord estimation systems, the
availability of vast amounts of heterogeneous reference annotations, and
insights from annotator subjectivity research make chord label personalization
increasingly important. Nevertheless, automatic chord estimation systems are
historically exclusively trained and evaluated on a single reference
annotation. We introduce a first approach to automatic chord label
personalization by modeling subjectivity through deep learning of a harmonic
interval-based chord label representation. After integrating these
representations from multiple annotators, we can accurately personalize chord
labels for individual annotators from a single model and the annotators' chord
label vocabulary. Furthermore, we show that chord personalization using
multiple reference annotations outperforms using a single reference annotation.Comment: Proceedings of the First International Conference on Deep Learning
and Music, Anchorage, US, May, 2017 (arXiv:1706.08675v1 [cs.NE]
Collective excitations and low temperature transport properties of bismuth
We examine the influence of collective excitations on the transport
properties (resistivity, magneto- optical conductivity) for semimetals,
focusing on the case of bismuth. We show, using an RPA approximation, that the
properties of the system are drastically affected by the presence of an
acoustic plasmon mode, consequence of the presence of two types of carriers
(electrons and holes) in this system. We found a crossover temperature T*
separating two different regimes of transport. At high temperatures T > T* we
show that Baber scattering explains quantitatively the DC resistivity
experiments, while at low temperatures T < T* interactions of the carriers with
this collective mode lead to a T^5 behavior of the resistivity. We examine
other consequences of the presence of this mode, and in particular predict a
two plasmon edge feature in the magneto-optical conductivity. We compare our
results with the experimental findings on bismuth. We discuss the limitations
and extensions of our results beyond the RPA approximation, and examine the
case of other semimetals such as graphite or 1T-TiSe_2
Depolarisation cooling of an atomic cloud
We propose a cooling scheme based on depolarisation of a polarised cloud of
trapped atoms. Similar to adiabatic demagnetisation, we suggest to use the
coupling between the internal spin reservoir of the cloud and the external
kinetic reservoir via dipolar relaxation to reduce the temperature of the
cloud. By optical pumping one can cool the spin reservoir and force the cooling
process. In case of a trapped gas of dipolar chromium atoms, we show that this
cooling technique can be performed continuously and used to approach the
critical phase space density for BECComment: 8 pages, 5 figure
Interplay of size and Landau quantizations in the de Haas-van Alphen oscillations of metallic nanowires
We examine the interplay between size quantization and Landau quantization in
the De Haas-Van Alphen oscillations of clean, metallic nanowires in a
longitudinal magnetic field for `hard' boundary conditions, i.e. those of an
infinite round well, as opposed to the `soft' parabolically confined boundary
conditions previously treated in Alexandrov and Kabanov (Phys. Rev. Lett. {\bf
95}, 076601 (2005) (AK)). We find that there exist {\em two} fundamental
frequencies as opposed to the one found in bulk systems and the three
frequencies found by AK with soft boundary counditions. In addition, we find
that the additional `magic resonances' of AK may be also observed in the
infinite well case, though they are now damped. We also compare the numerically
generated energy spectrum of the infinite well potential with that of our
analytic approximation, and compare calculations of the oscillatory portions of
the thermodynamic quantities for both models.Comment: Title changed, paper streamlined on suggestion of referrees, typos
corrected, numerical error in figs 2 and 3 corrected and final result
simplified -- two not three frequencies (as in the previous version) are
observed. Abstract altered accordingly. Submitted to Physical Review
The uniting of Europe and the foundation of EU studies: revisiting the neofunctionalism of Ernst B. Haas
This article suggests that the neofunctionalist theoretical legacy left by Ernst B. Haas is somewhat richer and more prescient than many contemporary discussants allow. The article develops an argument for routine and detailed re-reading of the corpus of neofunctionalist work (and that of Haas in particular), not only to disabuse contemporary students and scholars of the normally static and stylized reading that discussion of the theory provokes, but also to suggest that the conceptual repertoire of neofunctionalism is able to speak directly to current EU studies and comparative regionalism. Neofunctionalism is situated in its social scientific context before the theory's supposed erroneous reliance on the concept of 'spillover' is discussed critically. A case is then made for viewing Haas's neofunctionalism as a dynamic theory that not only corresponded to established social scientific norms, but did so in ways that were consistent with disciplinary openness and pluralism
Phase diagram of hot magnetized two-flavor color superconducting quark matter
A two-flavor color superconducting (2SC) Nambu--Jona-Lasinio (NJL) model is
introduced at finite temperature T, chemical potential mu and in the presence
of a constant magnetic field eB. The effect of (T,mu,eB) on the formation of
chiral and color symmetry breaking condensates is studied. The complete phase
portrait of the model in T-mu, mu-eB, and T-eB phase spaces for various fixed
eB, T, and mu is explored. A threshold magnetic field eB_t~ 0.5 GeV^2 is found
above which the dynamics of the system is solely dominated by the lowest Landau
level (LLL) and the effects of T and mu are partly compensated by eB.Comment: V1: 29 pages, 15 figures, 3 tables. V2: Discussions improved. Version
accepted for publication in PR
Properties of neutral mesons in a hot and magnetized quark matter
The properties of non-interacting and mesons are studied
at finite temperature, chemical potential and in the presence of a constant
magnetic field. To do this, the energy dispersion relations of these particles,
including nontrivial form factors, are derived using a derivative expansion of
the effective action of a two-flavor, hot and magnetized Nambu--Jona-Lasinio
(NJL) model up to second order. The temperature dependence of the pole and
screening masses as well as the directional refraction indices of magnetized
neutral mesons are explored for fixed magnetic fields and chemical potentials.
It is shown that, because of the explicit breaking of the Lorentz invariance by
the magnetic field, the refraction index and the screening mass of neutral
mesons exhibit a certain anisotropy in the transverse and longitudinal
directions with respect to the direction of the external magnetic field. In
contrast to their longitudinal refraction indices, the transverse indices of
the neutral mesons are larger than unity.Comment: V1: 26 pages, 15 figures; V2: Discussions improved, references added.
Version accepted for publication in PR
Kondo temperature of magnetic impurities at surfaces
Based on the experimental observation, that only the close vicinity of a
magnetic impurity at metal surfaces determines its Kondo behaviour, we
introduce a simple model which explains the Kondo temperatures observed for
cobalt adatoms at the (111) and (100) surfaces of Cu, Ag, and Au. Excellent
agreement between the model and scanning tunneling spectroscopy (STS)
experiments is demonstrated. The Kondo temperature is shown to depend on the
occupation of the d-level determined by the hybridization between adatom and
substrate with a minimum around single occupancy.Comment: 4 pages, 2 figure
Chiral density waves in quark matter within the Nambu--Jona-Lasinio model in an external magnetic field
A possibility of formation of static dual scalar and pseudoscalar density
wave condensates in dense quark matter is considered for the
Nambu--Jona-Lasinio model in an external magnetic field. Within a mean-field
approximation, the effective potential of the theory is obtained and its minima
are numerically studied; a phase diagram of the system is constructed. It is
shown that the presence of a magnetic field favors the formation of spatially
inhomogeneous condensate configurations at low temperatures and arbitrary
non-zero values of the chemical potential.Comment: 13 pages, 4 figure
- âŠ