77 research outputs found

    Lensing Noise in mm-wave Galaxy Cluster Surveys

    Full text link
    We study the effects of gravitational lensing by galaxy clusters of the background of dusty star-forming galaxies (DSFGs) and the Cosmic Microwave Background (CMB), and examine the implications for Sunyaev-Zel'dovich-based (SZ) galaxy cluster surveys. At the locations of galaxy clusters, gravitational lensing modifies the probability distribution of the background flux of the DSFGs as well as the CMB. We find that, in the case of a single-frequency 150 GHz survey, lensing of DSFGs leads to both a slight increase (~10%) in detected cluster number counts (due to a ~ 50% increase in the variance of the DSFG background, and hence an increased Eddington bias), as well as to a rare (occurring in ~2% of clusters) "filling-in" of SZ cluster signals by bright strongly lensed background sources. Lensing of the CMB leads to a ~55% reduction in CMB power at the location of massive galaxy clusters in a spatially-matched single-frequency filter, leading to a net decrease in detected cluster number counts. We find that the increase in DSFG power and decrease in CMB power due to lensing at cluster locations largely cancel, such that the net effect on cluster number counts for current SZ surveys is sub-dominant to Poisson errors.Comment: 6 pages, 6 figures, submitted to the Astrophysical Journa

    MNTES: Modeling Nonlinearity of TES detectors for Enhanced Cosmic Microwave Background measurements with LiteBIRD

    Full text link
    Traditional methods of converting electronic readout counts to optical power incident on Transition Edge Sensors (TES) for Cosmic Microwave Background (CMB) observations involve a linear approximation. For the upcoming LiteBIRD CMB satellite, strict nonlinearity requirements must be met to prevent contamination of the science band at 4f by the 2f signal, which arises from differential transmission or emissivity related to the half-wave plate's rotation rate fHWP. These constraints cannot be met using hardware solutions alone and therefore require a form of nonlinearity correction. We present MNTES, a novel physics-based, nonlinear calibration technique. This method leverages our physical understanding of the TES power balance equation, accounts for imperfect voltage bias by casting the bias network as its Th\'evenin equivalent, and can incorporate external information such as time-varying magnetic fields and focal plane temperature variations. The detector-specific parameters of MNTES will be measured during the ground calibration campaign prior to the LiteBIRD launch, yielding conversion functions that can take raw time-ordered data and output the reconstructed incident optical power. MNTES will allow us to achieve LiteBIRD's goal of measuring the primordial tensor fluctuation spectrum to {\delta}r < 0.001.Comment: Conference proceedings of SPIE 2024: Astronomical Telescopes and Instrumentatio

    Adaptation of frequency-domain readout for Transition Edge Sensor bolometers for the POLARBEAR-2 Cosmic Microwave Background experiment

    Full text link
    The POLARBEAR-2 CosmicMicrowave Background (CMB) experiment aims to observe B-mode polarization with high sensitivity to explore gravitational lensing of CMB and inflationary gravitational waves. POLARBEAR-2 is an upgraded experiment based on POLARBEAR-1, which had first light in January 2012. For POLARBEAR-2, we will build a receiver that has 7,588 Transition Edge Sensor (TES) bolometers coupled to two-band (95 and 150 GHz) polarization-sensitive antennas. For the large array's readout, we employ digital frequency-domain multiplexing and multiplex 32 bolometers through a single superconducting quantum interference device (SQUID). An 8-bolometer frequency-domain multiplexing readout has been deployed on POLARBEAR-1 experiment. Extending that architecture to 32 bolometers requires an increase in the bandwidth of the SQUID electronics to 3 MHz. To achieve this increase in bandwidth, we use Digital Active Nulling (DAN) on the digital frequency multiplexing platform. In this paper, we present requirements and improvements on parasitic inductance and resistance of cryogenic wiring and capacitors used for modulating bolometers. These components are problematic above 1 MHz. We also show that our system is able to bias a bolometer in its superconducting transition at 3 MHz

    A Method of Measuring TES Complex ETF Response in Frequency-domain Multiplexed Readout by Single Sideband Power Modulation

    Full text link
    The digital frequency domain multiplexing (DfMux) technique is widely used for astrophysical instruments with large detector arrays. Detailed detector characterization is required for instrument calibration and systematics control. We conduct the TES complex electrothermal-feedback (ETF) response measurement with the DfMux readout system as follows. By injecting a single sideband signal, we induce modulation in TES power dissipation over a frequency range encompassing the detector response. The modulated current signal induced by TES heating effect is measured, allowing for the ETF response characterization of the detector. With the injection of an upper sideband, the TES readout current shows both an upper and a lower sideband. We model the upper and lower sideband complex ETF response and verify the model by fitting to experimental data. The model not only can fit for certain physical parameters of the detector, such as loop gain, temperature sensitivity, current sensitivity, and time constant, but also enables us to estimate the systematic effect introduced by the multiplexed readout. The method is therefore useful for in-situ detector calibration and for estimating systematic effects during astronomical telescope observations, such as those performed by the upcoming LiteBIRD satellite.Comment: 9 pages, 4 figures, accepted to Journal of Low Temperature Physic

    CMB-S4 Science Book, First Edition

    Full text link
    This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales

    Systematic effects induced by half-wave plate differential optical load and TES nonlinearity for LiteBIRD

    Full text link
    LiteBIRD, a forthcoming satellite mission, aims to measure the polarization of the Cosmic Microwave Background (CMB) across the entire sky. The experiment will employ three telescopes, Transition-Edge Sensor (TES) bolometers and rotating Half-Wave Plates (HWPs) at cryogenic temperatures to ensure high sensitivity and systematic effects mitigation. This study is focused on the Mid- and High-Frequency Telescopes (MHFT), which will use rotating metal mesh HWPs. We investigate how power variations due to HWP differential emissivity and transmittance combine with TES nonlinear responsivity, resulting in an effective instrumental polarization. We present the results of simulations for the current HWP design, modeling the TES deviation from linearity as a second-order response. We quantify the level of acceptable residual nonlinearity assuming the mission requirement on the tensor-to-scalar ratio, δr<0.001\delta r < 0.001. Moreover, we provide an accuracy requirement on the measurement of TES responsivity nonlinearity level for MHFT channels. Lastly, we present possible mitigation methods that will be developed in future studies.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 202

    Development of the Low Frequency Telescope focal plane detector arrays for LiteBIRD

    Full text link
    LiteBIRD, a forthcoming JAXA mission, aims to accurately study the microwave sky within the 40-400 GHz frequency range divided into 15 distinct nominal bands. The primary objective is to constrain the CMB inflationary signal, specifically the primordial B-modes. LiteBIRD targets the CMB B-mode signal on large angular scales, where the primordial inflationary signal is expected to dominate, with the goal of reaching a tensor-to-scalar ratio sensitivity of σr0.001\sigma_r\sim0.001. LiteBIRD frequency bands will be split among three telescopes, with some overlap between telescopes for better control of systematic effects. Here we report on the development status of the detector arrays for the Low Frequency Telescope (LFT), which spans the 34-161 GHz range, with 12 bands subdivided between four types of trichroic pixels consisting of lenslet-coupled sinuous antennas. The signal from the antenna is bandpass filtered and sensed by AlMn Transition-Edge Sensors (TES). We provide an update on the status of the design and development of LiteBIRD's LFT LF1 (40-60-78 GHz), LF2 (50-68-89 GHz) pixels. We discuss design choices motivated by LiteBIRD scientific goals. In particular we focus on the details of the optimization of the design parameters of the sinuous antenna, on-chip bandpass filters, cross-under and impedance transformers and all the RF components that define the LF1 and LF2 pixel detection chain. We present this work in the context of the technical challenges and physical constraints imposed by the finite size of the instrument.Comment: 12 pages, 10 figures, 1 table, SPIE 202
    corecore