18,921 research outputs found
Free energy surfaces from nonequilibrium processes without work measurement
Recent developments in statistical mechanics have allowed the estimation of
equilibrium free energies from the statistics of work measurements during
processes that drive the system out of equilibrium. Here a different class of
processes is considered, wherein the system is prepared and released from a
nonequilibrium state, and no external work is involved during its observation.
For such ``clamp-and-release'' processes, a simple strategy for the estimation
of equilibrium free energies is offered. The method is illustrated with
numerical simulations, and analyzed in the context of tethered single-molecule
experiments.Comment: 15 pages, 3 figures (1 color); accepted to J. Chem. Phy
Matching pre-equilibrium dynamics and viscous hydrodynamics
We demonstrate how to match pre-equilibrium dynamics of a 0+1 dimensional
quark gluon plasma to 2nd-order viscous hydrodynamical evolution. The matching
allows us to specify the initial values of the energy density and shear tensor
at the initial time of hydrodynamical evolution as a function of the lifetime
of the pre-equilibrium period. We compare two models for the pre-equilibrium
quark-gluon plasma, longitudinal free streaming and collisionally-broadened
longitudinal expansion, and present analytic formulas which can be used to fix
the necessary components of the energy-momentum tensor. The resulting dynamical
models can be used to assess the effect of pre-equilibrium dynamics on
quark-gluon plasma observables. Additionally, we investigate the dependence of
entropy production on pre-equilibrium dynamics and discuss the limitations of
the standard definitions of the non-equilibrium entropy.Comment: 24 pages, 5 figures,v2: minor modifications and updated references.
Accepted for publication in Phys. Rev.
Covariant statistical mechanics and the stress-energy tensor
After recapitulating the covariant formalism of equilibrium statistical
mechanics in special relativity and extending it to the case of a non-vanishing
spin tensor, we show that the relativistic stress-energy tensor at
thermodynamical equilibrium can be obtained from a functional derivative of the
partition function with respect to the inverse temperature four-vector \beta.
For usual thermodynamical equilibrium, the stress-energy tensor turns out to be
the derivative of the relativistic thermodynamic potential current with respect
to the four-vector \beta, i.e. T^{\mu \nu} = - \partial \Phi^\mu/\partial
\beta_\nu. This formula establishes a relation between stress-energy tensor and
entropy current at equilibrium possibly extendable to non-equilibrium
hydrodynamics.Comment: 4 pages. Final version accepted for publication in Phys. Rev. Let
Vested Interests and Resistance to Technology Adoption
Employed technologies differ vastly across countries. Within countries many technologies that would obviously improve firms’ efficiency are not adopted. This paper explains these observations by emphasizing that a new technology positively affects workers by lowering prices and increasing their real income, but also negatively by costs of getting acquainted with the new technology. If the costs of adoption for workers exceed the benefits, they will aim at keeping the old technology in place. We formalise the trade-off in a simple OLG model with majority voting. Age groups that lose from adopting resist. Successful resistance blocks adoption and hence lowers growth. Finally, we analyse the effects of tougher competition. Provided that consumption and leisure are relatively good substitutes, tougher competition mitigates resistance and thus favours economic growth as it increases the share of the rent associated with the new technology that is being captured by the workers.technological change;resistance;vested interests;overlapping generations;competition
Pathogenicity of anti-ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura.
BACKGROUND: Acquired thrombotic thrombocytopenic purpura (TTP) is an autoimmune disease in which anti-ADAMTS13 autoantibodies cause severe enzyme deficiency. ADAMTS13 deficiency causes the loss of regulation of von Willebrand factor multimeric size and platelet-tethering function, which results in the formation of disseminated microvascular platelet microthrombi. Precisely how anti-ADAMTS13 autoantibodies, or antibody subsets, cause ADAMTS13 deficiency (ADAMTS13 activity generally <Â 10%) has not been formally investigated. METHODS: We analysed 92 acquired TTP episodes at presentation, through treatment and remission/relapse using epitope mapping and functional analyses to understand the pathogenic mechanisms of anti-ADAMTS13 IgG. RESULTS: 89/92 of TTP episodes had IgG recognising the ADAMTS13 N-terminal domains. The central spacer domain was the only N-terminal antigenic target detected. 38/92 TTP episodes had autoantibodies recognising the N-terminal domains alone; 54/92 TTP episodes also had antibodies against the ADAMTS13 C-terminal domains (TSP2-8 and/or CUB domains). Changes in autoantibody specificity were detected in 9/16 patients at relapse, suggesting a continued development of the disease. Functional analyses on IgG from 43 patients revealed inhibitory IgG were limited to anti-spacer domain antibodies. However, 15/43 patients had autoantibodies with no detectable inhibitory action and as many as 32/43 patients had autoantibodies with inhibitory function that was insufficient to account for the severe deficiency state, suggesting that in many patients there is an alternative pathogenic mechanism. We therefore analysed plasma ADAMTS13 antigen levels in 91 acquired TTP presentation samples. We demonstrated markedly reduced ADAMTS13 antigen levels in all presentation samples, median 6% normal (range 0-47%), with 84/91 patients having <Â 25% ADAMTS13 antigen. ADAMTS13 antigen in the lowest quartile at first presentation was associated with increased mortality (odds ratio 5.7). CONCLUSIONS: Anti-spacer domain autoantibodies are the major inhibitory antibodies in acquired TTP. However, depletion of ADAMTS13 antigen (rather than enzyme inhibition) is a dominant pathogenic mechanism. ADAMTS13 antigen levels at presentation have prognostic significance. Taken together, our results provide new insights into the pathophysiology of acquired TTP
The structural and electrical properties of thermally grown TiO2 thin films
We studied the structural and electrical properties of TiO2 thin films grown by thermal oxidation of e-beam evaporated Ti layers on Si substrates. Time of flight secondary ion mass spectroscopy (TOF-SIMS) was used to analyse the interfacial and chemical composition of the TiO2 thin films. Metal oxide semiconductor (MOS) capacitors with Pt or Al as the top electrode were fabricated to analyse electrical properties of the TiO2 thin films. We show that the reactivity of the Al top contact affects electrical properties of the oxide layers. The current transport mechanism in the TiO2 thin films is shown to be Poole–Frenkel (P–F) emission at room temperature. At 84 K, Fowler– Nordheim (F–N) tunnelling and trap-assisted tunnelling are observed. By comparing the electrical characteristics of thermally grown TiO2 thin films with the properties of those grown by other techniques reported in the literature, we suggest that, irrespective of the deposition technique, annealing of as-deposited TiO2 in O2 is a similar process to thermal oxidation of Ti thin films
- …