30 research outputs found

    Space Decompositions and Solvers for Discontinuous Galerkin Methods

    Full text link
    We present a brief overview of the different domain and space decomposition techniques that enter in developing and analyzing solvers for discontinuous Galerkin methods. Emphasis is given to the novel and distinct features that arise when considering DG discretizations over conforming methods. Connections and differences with the conforming approaches are emphasized.Comment: 2 pages 2 figures no table

    High order and energy preserving discontinuous Galerkin methods for the Vlasov-Poisson system

    Full text link
    We present a computational study for a family of discontinuous Galerkin methods for the one dimensional Vlasov-Poisson system that has been recently introduced. We introduce a slight modification of the methods to allow for feasible computations while preserving the properties of the original methods. We study numerically the verification of the theoretical and convergence analysis, discussing also the conservation properties of the schemes. The methods are validated through their application to some of the benchmarks in the simulation of plasma physics.Comment: 44 pages, 28 figure

    A Combined Preconditioning Strategy for Nonsymmetric Systems

    Full text link
    We present and analyze a class of nonsymmetric preconditioners within a normal (weighted least-squares) matrix form for use in GMRES to solve nonsymmetric matrix problems that typically arise in finite element discretizations. An example of the additive Schwarz method applied to nonsymmetric but definite matrices is presented for which the abstract assumptions are verified. A variable preconditioner, combining the original nonsymmetric one and a weighted least-squares version of it, is shown to be convergent and provides a viable strategy for using nonsymmetric preconditioners in practice. Numerical results are included to assess the theory and the performance of the proposed preconditioners.Comment: 26 pages, 3 figure

    On the continuum limit of epidemiological models on graphs: convergence and approximation results

    Full text link
    We focus on an epidemiological model (the archetypical SIR system) defined on graphs and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges. By relying on the theory of so called graphons we provide a characterization of the limit and establish convergence results. We also provide approximation results for both deterministic and random discretizations.Comment: 30 pages, 1 figur

    A simple preconditioner for a discontinuous Galerkin method for the Stokes problem

    Full text link
    In this paper we construct Discontinuous Galerkin approximations of the Stokes problem where the velocity field is H(div)-conforming. This implies that the velocity solution is divergence-free in the whole domain. This property can be exploited to design a simple and effective preconditioner for the final linear system.Comment: 27 pages, 4 figure

    A Block Solver for the Exponentially Fitted IIPG-0 method

    Get PDF
    We consider an exponentially fitted discontinuous Galerkin method and propose a robust block solver for the resulting linear systems.Comment: 8 pages, 2 figures, 2 table

    Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients

    Full text link
    In this paper, we present a multigrid preconditioner for solving the linear system arising from the piecewise linear nonconforming Crouzeix-Raviart discretization of second order elliptic problems with jump coefficients. The preconditioner uses the standard conforming subspaces as coarse spaces. Numerical tests show both robustness with respect to the jump in the coefficient and near-optimality with respect to the number of degrees of freedom.Comment: Submitted to DD20 Proceeding

    Discontinuous Galerkin methods for the Multi-dimensional Vlasov-Poisson problem

    Get PDF
    We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that preserves the total energy of the system
    corecore