1,588 research outputs found
Preeminent role of the Van Hove singularity in the strong-coupling analysis of scanning tunneling spectroscopy for two-dimensional cuprates
In two dimensions the non-interacting density of states displays a Van Hove
singularity (VHS) which introduces an intrinsic electron-hole asymmetry, absent
in three dimensions. We show that due to this VHS the strong-coupling analysis
of tunneling spectra in high- superconductors must be reconsidered. Based
on a microscopic model which reproduces the experimental data with great
accuracy, we elucidate the peculiar role played by the VHS in shaping the
tunneling spectra, and show that more conventional analyses of strong-coupling
effects can lead to severe errors.Comment: 5 pages, 4 figure
Strong-coupling analysis of scanning tunneling spectra in BiSrCaCuO
We study a series of spectra measured in the superconducting state of
optimally-doped Bi-2223 by scanning tunneling spectroscopy. Each spectrum, as
well as the average of spectra presenting the same gap, is fitted using a
strong-coupling model taking into account the band structure, the BCS gap, and
the interaction of electrons with the spin resonance. After describing our
measurements and the main characteristics of the strong-coupling model, we
report the whole set of parameters determined from the fits, and we discuss
trends as a function of the gap magnitude. We also simulate angle-resolved
photoemission spectra, and compare with recent experimental results.Comment: Published versio
Graphene as a quantum surface with curvature-strain preserving dynamics
We discuss how the curvature and the strain density of the atomic lattice
generate the quantization of graphene sheets as well as the dynamics of
geometric quasiparticles propagating along the constant curvature/strain
levels. The internal kinetic momentum of Riemannian oriented surface (a vector
field preserving the Gaussian curvature and the area) is determined.Comment: 13p, minor correction
Strain-induced Evolution of Electronic Band Structures in a Twisted Graphene Bilayer
Here we study the evolution of local electronic properties of a twisted
graphene bilayer induced by a strain and a high curvature. The strain and
curvature strongly affect the local band structures of the twisted graphene
bilayer; the energy difference of the two low-energy van Hove singularities
decreases with increasing the lattice deformations and the states condensed
into well-defined pseudo-Landau levels, which mimic the quantization of massive
Dirac fermions in a magnetic field of about 100 T, along a graphene wrinkle.
The joint effect of strain and out-of-plane distortion in the graphene wrinkle
also results in a valley polarization with a significant gap, i.e., the
eight-fold degenerate Landau level at the charge neutrality point is splitted
into two four-fold degenerate quartets polarized on each layer. These results
suggest that strained graphene bilayer could be an ideal platform to realize
the high-temperature zero-field quantum valley Hall effect.Comment: 4 figure
Artificial graphene as a tunable Dirac material
Artificial honeycomb lattices offer a tunable platform to study massless
Dirac quasiparticles and their topological and correlated phases. Here we
review recent progress in the design and fabrication of such synthetic
structures focusing on nanopatterning of two-dimensional electron gases in
semiconductors, molecule-by-molecule assembly by scanning probe methods, and
optical trapping of ultracold atoms in crystals of light. We also discuss
photonic crystals with Dirac cone dispersion and topologically protected edge
states. We emphasize how the interplay between single-particle band structure
engineering and cooperative effects leads to spectacular manifestations in
tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference
Investigating hyper-vigilance for social threat of lonely children
The hypothesis that lonely children show hypervigilance for social threat was examined in a series of three studies that employed different methods including advanced eye-tracking technology. Hypervigilance for social threat was operationalized as hostility to ambiguously motivated social exclusion in a variation of the hostile attribution paradigm (Study 1), scores on the Children’s Rejection-Sensitivity Questionnaire (Study 2), and visual attention to socially rejecting stimuli (Study 3). The participants were 185 children (11 years-7 months to 12 years-6 months), 248 children (9 years-4 months to 11 years-8 months) and 140 children (8 years-10 months to 12 years-10 months) in the three studies, respectively. Regression analyses showed that, with depressive symptoms covaried, there were quadratic relations between loneliness and these different measures of hypervigilance to social threat. As hypothesized, only children in the upper range of loneliness demonstrated elevated hostility to ambiguously motivated social exclusion, higher scores on the rejection sensitivity questionnaire, and disengagement difficulties when viewing socially rejecting stimuli. We found that very lonely children are hypersensitive to social threat
Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV
We search for the standard model Higgs boson produced in association with an
electroweak vector boson in events with no identified charged leptons, large
imbalance in transverse momentum, and two jets where at least one contains a
secondary vertex consistent with the decay of b hadrons. We use ~1 fb-1
integrated luminosity of proton-antiproton collisions at s**(1/2)=1.96 TeV
recorded by the CDF II experiment at the Tevatron. We find 268 (16) single
(double) b-tagged candidate events, where 248 +/- 43 (14.4 +/- 2.7) are
expected from standard model background processes. We place 95% confidence
level upper limits on the Higgs boson production cross section for several
Higgs boson masses ranging from 110 GeV/c2 to 140 GeV/c2. For a mass of 115
GeV/c2 the observed (expected) limit is 20.4 (14.2) times the standard model
prediction.Comment: 8 pages, 2 figures, submitted to Phys. Rev. Let
Limits on Anomalous Triple Gauge Couplings in ppbar Collisions at sqrt{s}=1.96 TeV
We present a search for anomalous triple gauge couplings (ATGC) in WW and WZ
boson production. The boson pairs are produced in ppbar collisions at
sqrt{s}=1.96 TeV, and the data sample corresponds to 350 pb-1 of integrated
luminosity collected with the CDF II detector at the Fermilab Tevatron. In this
search one W decays to leptons, and the other boson (W or Z) decays
hadronically. Combining with a previously published CDF measurement of Wgamma
boson production yields ATGC limits of -0.18 < lambda < 0.17 and -0.46 < Delta
kappa < 0.39 at the 95% confidence level, using a cut-off scale Lambda=1.5 TeV.Comment: 7 pages, 3 figures. Submitted to Phys. Rev.
First Measurement of the W Boson Mass in Run II of the Tevatron
We present a measurement of the W boson mass using 200/pb of data collected
in pbar p collisions at sqrt(s) = 1.96 TeV by the CDF II detector at Run II of
the Fermilab Tevatron. With a sample of 63964 W -> e nu candidates and 51128 W
-> mu nu candidates, we measure M_W = (80413 +- 34 (stat) +- 34 (syst) = 80413
+- 48) MeV/c^2. This is the most precise single measurement of the W boson mass
to date.Comment: published version in PR
- …