118 research outputs found

    Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein

    Get PDF
    KBG syndrome; Missense variants; Neurodevelopmental disordersSíndrome KBG; Variants de missense; Trastorns del neurodesenvolupamentSíndrome KBG; Variantes de missense; Trastornos del neurodesarrolloPurpose Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. Methods We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. Results We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. Conclusion Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping

    Genome-wide variant calling in reanalysis of exome sequencing data uncovered a pathogenic TUBB3 variant.

    Get PDF
    Almost half of all individuals affected by intellectual disability (ID) remain undiagnosed. In the Solve-RD project, exome sequencing (ES) datasets from unresolved individuals with (syndromic) ID (n = 1,472 probands) are systematically reanalyzed, starting from raw sequencing files, followed by genome-wide variant calling and new data interpretation. This strategy led to the identification of a disease-causing de novo missense variant in TUBB3 in a girl with severe developmental delay, secondary microcephaly, brain imaging abnormalities, high hypermetropia, strabismus and short stature. Interestingly, the TUBB3 variant could only be identified through reanalysis of ES data using a genome-wide variant calling approach, despite being located in protein coding sequence. More detailed analysis revealed that the position of the variant within exon 5 of TUBB3 was not targeted by the enrichment kit, although consistent high-quality coverage was obtained at this position, resulting from nearby targets that provide off-target coverage. In the initial analysis, variant calling was restricted to the exon targets ± 200 bases, allowing the variant to escape detection by the variant calling algorithm. This phenomenon may potentially occur more often, as we determined that 36 established ID genes have robust off-target coverage in coding sequence. Moreover, within these regions, for 17 genes (likely) pathogenic variants have been identified before. Therefore, this clinical report highlights that, although compute-intensive, performing genome-wide variant calling instead of target-based calling may lead to the detection of diagnostically relevant variants that would otherwise remain unnoticed

    Genome-wide variant calling in reanalysis of exome sequencing data uncovered a pathogenic TUBB3 variant

    Get PDF
    Almost half of all individuals affected by intellectual disability (ID) remain undiagnosed. In the Solve-RD project, exome sequencing (ES) datasets from unresolved individuals with (syndromic) ID (n = 1,472 probands) are systematically reanalyzed, starting from raw sequencing files, followed by genome-wide variant calling and new data interpretation. This strategy led to the identification of a disease-causing de novo missense variant in TUBB3 in a girl with severe developmental delay, secondary microcephaly, brain imaging abnormalities, high hypermetropia, strabismus and short stature. Interestingly, the TUBB3 variant could only be identified through reanalysis of ES data using a genome-wide variant calling approach, despite being located in protein coding sequence. More detailed analysis revealed that the position of the variant within exon 5 of TUBB3 was not targeted by the enrichment kit, although consistent high-quality coverage was obtained at this position, resulting from nearby targets that provide off-target coverage. In the initial analysis, variant calling was restricted to the exon targets +/- 200 bases, allowing the variant to escape detection by the variant calling algorithm. This phenomenon may potentially occur more often, as we determined that 36 established ID genes have robust off-target coverage in coding sequence. Moreover, within these regions, for 17 genes (likely) pathogenic variants have been identified before. Therefore, this clinical report highlights that, although compute-intensive, performing genomewide variant calling instead of target-based calling may lead to the detection of diagnostically relevant variants that would otherwise remain unnoticed

    Model matchmaking via the Solve-RD Rare Disease Models & Mechanisms Network (RDMM-Europe)

    Get PDF
    In biomedical research, particularly for rare diseases (RDs), there is a critical need for model organisms to unravel the mechanistic basis of diseases, perform biomarker studies and develop potential therapeutic interventions. Within Solve-RD, an EU-funded research project with the aim of solving large numbers of previously unsolved RDs, the European Rare Disease Models &amp; Mechanisms Network (RDMM-Europe) has been established.</p

    OPLAH ablation leads to accumulation of 5-oxoproline, oxidative stress, fibrosis, and elevated fillings pressures:a murine model for heart failure with a preserved ejection fraction

    Get PDF
    Aims The prevalence of heart failure with a preserved ejection fraction (HFpEF) is increasing, but therapeutic options are limited. Oxidative stress is suggested to play an important role in the pathophysiology of HFpEF. However, whether oxidative stress is a bystander due to comorbidities or causative in itself remains unknown. Recent results have shown that depletion of 5-oxoprolinase (OPLAH) leads to 5-oxoproline accumulation, which is an important mediator of oxidative stress in the heart. We hypothesize that oxidative stress induced by elevated levels of 5-oxoproline leads to the onset of a murine HFpEF-like phenotype. Methods and results Oplah full body knock-out (KO) mice had higher 5-oxoproline levels coupled to increased oxidative stress. Compared with wild-type (WT) littermates, KO mice had increased cardiac and renal fibrosis with concurrent elevated left ventricular (LV) filling pressures, impaired LV relaxation, yet a normal LV ejection fraction. Following the induction of cardiac ischaemia/reperfusion (IR) injury, 52.4% of the KO mice died compared with only 15.4% of the WT mice (P <0.03). Furthermore, KO mice showed a significantly increased atrial, ventricular, kidney, and liver weights compared with WT mice (P <0.05 for all). Cardiac and renal fibrosis were more pronounced following cardiac IR injury in the KO mice and these mice developed proteinuria post-IR injury. To further address the link between 5-oxoproline and HFpEF, 5-oxoproline was measured in the plasma of HFpEF patients. Compared with healthy controls (3.8 +/- 0.6 mu M), 5-oxoproline levels were significantly elevated in HFpEF patients (6.8 +/- 1.9 mu M, P <0.0001). Furthermore, levels of 5-oxoproline were independently associated with more concentric remodelling on echocardiography. Conclusion Oxidative stress induced by 5-oxoproline results in a murine phenotype reminiscent of the clinical manifestation of HFpEF without the need for surgical or pharmacological interference. Better understanding of the role of oxidative stress in HFpEF may potentially lead to novel therapeutic options

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose: Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the "ClinVar low-hanging fruit" reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods: Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results: We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion: The "ClinVar low-hanging fruit" analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock.The Solve-RD project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number 779257. Data were analyzed using the RD-Connect Genome-Phenome Analysis Platform, which received funding from the EU projects RD-Connect, Solve-RD, and European Joint Programme on Rare Diseases (grant numbers FP7 305444, H2020 779257, H2020 825575), Instituto de Salud Carlos III (grant numbers PT13/0001/0044, PT17/0009/0019; Instituto Nacional de Bioinformática), and ELIXIR Implementation Studies. The collaborations in this study were facilitated by the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies, one of the 24 European Reference Networks approved by the European Reference Network Board of Member States, cofunded by the European Commission. This project was supported by the Czech Ministry of Health (number 00064203) and by the Czech Ministry of Education, Youth and Sports (number - LM2018132) to M.M.S

    Reducing sectoral hard to abate emissions to limit reliance of Carbon Dioxide Removal in 1.5°C scenarios

    Get PDF
    Achieving net-zero greenhouse gas targets is often achieved by compensating residual greenhouse gas emissions in the hard to abate (HtA) sectors, with carbon dioxide removal (CDR) options. However, large-scale application of CDR may lead to environmental, technical and social concerns. The extent to which residual emissions can be reduced in the industry, agriculture, buildings and transport sector is analysed based on integrated assessment of scenarios with ambitious measures in the HtA sectors. Two scenarios that explore demand and technology-focused approaches show that by reducing residual emissions, the CDR ceiling can be significantly lowered (23-30%) compared to reference in the net-zero year. The agriculture sector plays a critical role in this given the large share of residual emissions. The additional measures allow to create a 1.5°C scenario in which crop-based bioenergy use is limited to 40 EJ/yr, therefore within sustainable limits, and afforestation can be limited to abandoned cropland and grassland

    Expansion of the neurodevelopmental phenotype of individuals with EEF1A2 variants and genotype-phenotype study

    Get PDF
    Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.</p

    Comprehensive reanalysis for CNVs in ES data from unsolved rare disease cases results in new diagnoses

    Get PDF
    We report the diagnostic results of a comprehensive copy number variant (CNV) reanalysis of 9,171 exome sequencing (ES) datasets from 5,757 families, including 6,143 individuals affected by a rare disease (RD). The data analysed was extremely heterogeneous, having been generated using 28 different exome enrichment kits, and sequenced on multiple short-read sequencing platforms, by 42 different research groups across Europe partnering in the Solve-RD project. Each of these research groups had previously undertaken their own analysis of the ES data but had failed to identify disease-causing variants.We applied three CNV calling algorithms to maximise sensitivity: ClinCNV, Conifer, and ExomeDepth. Rare CNVs overlapping genes of interest in custom lists provided by one of four partner European Reference Networks (ERN) were identified and taken forward for interpretation by clinical experts in RD. To facilitate interpretation, Integrative Genomics Viewer (IGV) screenshots incorporating a variety of custom-made tracks were generated for all prioritised CNVs.These analyses have resulted in a molecular diagnosis being provided for 51 families in this sample, with ClinCNV performing the best of the three algorithms in identifying disease-causing CNVs. We also identified pathogenic CNVs that are partially explanatory of the proband’s phenotype in a further 34 individuals. This work illustrates the value of reanalysing EScold casesfor CNVs even where analyses had been undertaken previously. Crucially, identification of these previously undetected CNVs has resulted in the conclusion of the diagnostic odyssey for these RD families, some of which had endured decades.3. Good health and well-bein

    A MT-TL1 variant identified by whole exome sequencing in an individual with intellectual disability, epilepsy, and spastic tetraparesis.

    Get PDF
    Funder: The Solve-RD project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 779257The genetic etiology of intellectual disability remains elusive in almost half of all affected individuals. Within the Solve-RD consortium, systematic re-analysis of whole exome sequencing (WES) data from unresolved cases with (syndromic) intellectual disability (n = 1,472 probands) was performed. This re-analysis included variant calling of mitochondrial DNA (mtDNA) variants, although mtDNA is not specifically targeted in WES. We identified a functionally relevant mtDNA variant in MT-TL1 (NC_012920.1:m.3291T > C; NC_012920.1:n.62T > C), at a heteroplasmy level of 22% in whole blood, in a 23-year-old male with severe intellectual disability, epilepsy, episodic headaches with emesis, spastic tetraparesis, brain abnormalities, and feeding difficulties. Targeted validation in blood and urine supported pathogenicity, with heteroplasmy levels of 23% and 58% in index, and 4% and 17% in mother, respectively. Interestingly, not all phenotypic features observed in the index have been previously linked to this MT-TL1 variant, suggesting either broadening of the m.3291T > C-associated phenotype, or presence of a co-occurring disorder. Hence, our case highlights the importance of underappreciated mtDNA variants identifiable from WES data, especially for cases with atypical mitochondrial phenotypes and their relatives in the maternal line
    corecore