507 research outputs found
BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization
Background: Variation in chromatin organization across single cells can help shed important light on the mechanisms controlling gene expression, but scale, noise, and sparsity pose significant challenges for interpretation of single cell chromatin data. Here, we develop BROCKMAN (Brockman Representation Of Chromatin by K-mers in Mark-Associated Nucleotides), an approach to infer variation in transcription factor (TF) activity across samples through unsupervised analysis of the variation in DNA sequences associated with an epigenomic mark. Results: BROCKMAN represents each sample as a vector of epigenomic-mark-associated DNA word frequencies, and decomposes the resulting matrix to find hidden structure in the data, followed by unsupervised grouping of samples and identification of the TFs that distinguish groups. Applied to single cell ATAC-seq, BROCKMAN readily distinguished cell types, treatments, batch effects, experimental artifacts, and cycling cells. We show that each variable component in the k-mer landscape reflects a set of co-varying TFs, which are often known to physically interact. For example, in K562 cells, AP-1 TFs were central determinant of variability in chromatin accessibility through their variable expression levels and diverse interactions with other TFs. We provide a theoretical basis for why cooperative TF binding – and any associated epigenomic mark – is inherently more variable than non-cooperative binding. Conclusions: BROCKMAN and related approaches will help gain a mechanistic understanding of the trans determinants of chromatin variability between cells, treatments, and individuals. Keywords: Single-cell, Epigenome, Chromatin, scATAC-seq, K-mer, N-gram, Factorization, Decomposition, Clustering,
Transcription factorNational Human Genome Research Institute (U.S.) (Centers of Excellence in Genomic Science Grant)Howard Hughes Medical Institute (Centers of Excellence in Genomic Science Grant
Eradicating cancer cells: struggle with a chameleon
Eradication of cancer stem cells to abrogate tumor growth is a new treatment modality. However, like normal cells cancer cells show plasticity. Differentiated tumor stem cells can acquire stem cell properties when they gain access to the stem cell niche. This indicates that eradicating of stem cells (emptying of the niche) alone will not lead to eradication of the tumor. Treatment should be directed to cancer stem cells à nd more mature cancer cells
Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca
In this paper we propose an extension of the Rebeca language that can be used
to model distributed and asynchronous systems with timing constraints. We
provide the formal semantics of the language using Structural Operational
Semantics, and show its expressiveness by means of examples. We developed a
tool for automated translation from timed Rebeca to the Erlang language, which
provides a first implementation of timed Rebeca. We can use the tool to set the
parameters of timed Rebeca models, which represent the environment and
component variables, and use McErlang to run multiple simulations for different
settings. Timed Rebeca restricts the modeller to a pure asynchronous
actor-based paradigm, where the structure of the model represents the service
oriented architecture, while the computational model matches the network
infrastructure. Simulation is shown to be an effective analysis support,
specially where model checking faces almost immediate state explosion in an
asynchronous setting.Comment: In Proceedings FOCLASA 2011, arXiv:1107.584
Human CD1c+ DCs are critical cellular mediators of immune responses induced by immunogenic cell death
Chemotherapeutics, including the platinum compounds oxaliplatin (OXP) and cisplatin (CDDP), are standard care of treatment for cancer. Although chemotherapy has long been considered immunosuppressive, evidence now suggests that certain cytotoxic agents can efficiently stimulate antitumor responses, through the induction of a form of apoptosis, called immunogenic cell death (ICD). ICD is characterized by exposure of calreticulin and heat shock proteins (HSPs), secretion of ATP and release of high-mobility group box 1 (HMGB1). Proper activation of the immune system relies on the integration of these signals by dendritic cells (DCs). Studies on the crucial role of DCs, in the context of ICD, have been performed using mouse models or human in vitro-generated monocyte-derived DCs (moDCs), which do not fully recapitulate the in vivo situation. Here, we explore the effect of platinum-induced ICD on phenotype and function of human blood circulating DCs. Tumor cells were treated with OXP or CDDP and induction of ICD was investigated. We show that both platinum drugs triggered translocation of calreticulin and HSP70, as well as the release of ATP and HMGB1. Platinum treatment increased phagocytosis of tumor fragments by human blood DCs and enhanced phenotypic maturation of blood myeloid and plasmacytoid DCs. Moreover, upon interaction with platinum-treated tumor cells, CD1c+ DCs efficiently stimulated allogeneic proliferation of T lymphocytes. Together, our observations indicate that platinum-treated tumor cells may exert an active stimulatory effect on human blood DCs. In particular, these data suggest that CD1c+ DCs are critical mediators of immune responses induced by ICD
Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML
Leukemia stem cells (LSCs) have the capacity to self-renew and propagate disease upon serial transplantation in animal models, and elimination of this cell population is required for curative therapies. Here, we describe a series of pooled, in vivo RNAi screens to identify essential transcription factors (TFs) in a murine model of acute myeloid leukemia (AML) with genetically and phenotypically defined LSCs. These screens reveal the heterodimeric, circadian rhythm TFs Clock and Bmal1 as genes required for the growth of AML cells in vitro and in vivo. Disruption of canonical circadian pathway components produces anti-leukemic effects, including impaired proliferation, enhanced myeloid differentiation, and depletion of LSCs. We find that both normal and malignant hematopoietic cells harbor an intact clock with robust circadian oscillations, and genetic knockout models reveal a leukemia-specific dependence on the pathway. Our findings establish a role for the core circadian clock genes in AML.National Institutes of Health (U.S.) (Grant P01 CA066996)National Institutes of Health (U.S.) (Grant R01 HL082945)National Cancer Institute (U.S.) (Grant P30-CA14051
Heterogeneous Responses of Hematopoietic Stem Cells to Inflammatory Stimuli are Altered with Age
Long-term hematopoietic stem cells (LT-HSCs) maintain hematopoietic output throughout an animal’s lifespan. However, with age, the balance is disrupted, and LT-HSCs produce a myeloid-biased output, resulting in poor immune responses to infectious challenge and the development of myeloid leukemias. Here, we show that young and aged LT-HSCs respond differently to inflammatory stress, such that aged LT-HSCs produce a cell-intrinsic, myeloid-biased expression program. Using single-cell RNA sequencing (scRNA-seq), we identify a myeloid-biased subset within the LT-HSC population (mLT-HSCs) that is prevalent among aged LT-HSCs. We identify CD61 as a marker of mLT-HSCs and show that CD61-high LT-HSCs are uniquely primed to respond to acute inflammatory challenge. We predict that several transcription factors regulate the mLT-HSCs gene program and show that Klf5, Ikzf1, and Stat3 play an important role in age-related inflammatory myeloid bias. We have therefore identified and isolated an LT-HSC subset that regulates myeloid versus lymphoid balance under inflammatory challenge and with age
Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able to skew the immune response in a specific direction. In particular, IL-12p70 producing DC drive T cells towards a T helper 1 type response. A serious disadvantage of current clinical grade ex vivo generated monocyte-derived DC is the poor IL-12p70 production. We have investigated the effects of Toll-like receptor (TLR)-mediated maturation on ex vivo generated human monocyte-derived DC. We demonstrate that in contrast to cytokine-matured DC, DC matured with poly(I:C) (TLR3 ligand) and/or R848 (TLR7/8 ligand) are able to produce vast amounts of IL-12p70, but exhibit a reduced migratory capacity. The addition of prostaglandin E2 (PGE2) improved the migratory capacity of TLR-ligand matured DC while maintaining their IL-12p70 production upon T cell encounter. We propose a novel clinical grade maturation protocol in which TLR ligands poly(I:C) and R848 are combined with PGE2 to generate DC with both high migratory capacity and IL-12p70 production upon T cell encounter
How baseline, new-onset, and persistent depressive symptoms are associated with cardiovascular and non-cardiovascular mortality in incident patients on chronic dialysis
AbstractObjectiveDepressive symptoms are associated with mortality among patients on chronic dialysis therapy. It is currently unknown how different courses of depressive symptoms are associated with both cardiovascular and non-cardiovascular mortality.MethodsIn a Dutch prospective nation-wide cohort study among incident patients on chronic dialysis, 1077 patients completed the Mental Health Inventory, both at 3 and 12months after starting dialysis. Cox regression models were used to calculate crude and adjusted hazard ratios (HRs) for mortality for patients with depressive symptoms at 3months only (baseline only), at 12months only (new-onset), and both at 3 and 12months (persistent), using patients without depressive symptoms at 3 and 12months as reference group.ResultsDepressive symptoms at baseline only seemed to be a strong marker for non-cardiovascular mortality (HRadj 1.91, 95% CI 1.26–2.90), whereas cardiovascular mortality was only moderately increased (HRadj 1.41, 95% CI 0.85–2.33). In contrast, new-onset depressive symptoms were moderately associated with both cardiovascular (HRadj 1.66, 95% CI 1.06–2.58) and non-cardiovascular mortality (HRadj 1.46, 95% CI 0.97–2.20). Among patients with persistent depressive symptoms, a poor survival was observed due to both cardiovascular (HRadj 2.14, 95% CI 1.42–3.24) and non-cardiovascular related mortality (HRadj 1.76, 95% CI 1.20–2.59).ConclusionThis study showed that different courses of depressive symptoms were associated with a poor survival after the start of dialysis. In particular, temporary depressive symptoms at the start of dialysis may be a strong marker for non-cardiovascular mortality, whereas persistent depressive symptoms were associated with both cardiovascular and non-cardiovascular mortality
The Role of Teachers' Expectations in the Association between Children's SES and Performance in Kindergarten: A Moderated Mediation Analysis
This study examines the role of teachers' expectations in the association between children's socio-economic background and achievement outcomes. Furthermore, the role of children's ethnicity in moderating this mediated relation is investigated. In the present study, 3,948 children from kindergarten are examined. Data are analysed by means of structural equation modeling. First, results show that teachers' expectations mediate the relation between children's SES and their later language and math achievement, after controlling for children's ethnicity, prior achievement and gender. This result indicates that teachers may exacerbate individual differences between children. Second, children's ethnicity moderates the mediation effect of teachers' expectations with respect to math outcomes. The role of teachers' expectations in mediating the relation between SES and math outcomes is stronger for majority children than for minority children
- …