40 research outputs found
Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe
Transverse momentum spectra of charged particles in proton-proton collisions at root s=900 GeV with ALICE at the LHC
-The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at root s = 900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (vertical bar eta vertical bar (INEL) = 0.483 +/- 0.001 (stat.) +/- 0.007 (syst.) GeV/c and (NSD) = 0.489 +/- 0.001 (stat.) +/- 0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET
First proton-proton collisions at the LHC as observed with the ALICE detector: measurement of the charged-particle pseudorapidity density at root s=900 GeV
-On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range vertical bar eta vertical bar S collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase
The effects of using different output measures in efficiency analysis of public transport operations
Charge separation relative to the reaction plane in Pb-Pb collisions at root s(NN)=2.76 TeV
Measurements of charge-dependent azimuthal correlations with the ALICE detector at the LHC are
reported for Pb-Pb collisions at √s_NN=2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudorapidity range |eta| < 0:8 are presented as a function of the collision centrality, particle separation in pseudorapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge-dependent azimuthal correlations observed at RHIC and LHC energies
Production of Muons from Heavy Flavor Decays at Forward Rapidity in pp and Pb-Pb Collisions at √sNN=2.76
The ALICE Collaboration has measured the inclusive production of muons from heavy-flavor decays at forward rapidity, 2.5<y<4, in pp and Pb-Pb collisions at √sNN=2.76 TeV. The pt-differential inclusive cross section of muons from heavy-flavor decays in pp collisions is compared to perturbative
QCD calculations. The nuclear modification factor is studied as a function of pt and collision centrality. A weak suppression is measured in peripheral collisions. In the most central collisions, a suppression of a factor of about 3–4 is observed in 6<pt < 10 GeV/c. The suppression shows no significant pt
dependence
Measurement of Event Background Fluctuations for Charged Particle Jet Reconstruction in Pb–Pb collisions at √sNN = 2:76TeV
The effect of event background fluctuations on charged particle jet reconstruc- tion in Pb-Pb collisions at √sNN = 2.76 TeV has been measured with the ALICE experi- ment. The main sources of non-statistical fluctuations are characterized based purely on experimental data with an unbiased method, as well as by using single high pt particles and simulated jets embedded into real Pb-Pb events and reconstructed with the anti-kt jet finder. The influence of a low transverse momentum cut-off on particles used in the jet reconstruction is quantified by varying the minimum track pt between 0.15 GeV/c and 2 GeV/c. For embedded jets reconstructed from charged particles with pt > 0.15 GeV/c, the uncertainty in the reconstructed jet transverse momentum due to the heavy-ion back- ground is measured to be 11.3GeV/c (standard deviation) for the 10% most central Pb- Pb collisions, slightly larger than the value of 11.0GeV/c measured using the unbiased method. For a higher particle transverse momentum threshold of 2 GeV/c, which will gen- erate a stronger bias towards hard fragmentation in the jet finding process, the standard deviation of the fluctuations in the reconstructed jet transverse momentum is reduced to 4.8-5.0GeV/c for the 10% most central events. A non-Gaussian tail of the momentum uncertainty is observed and its impact on the reconstructed jet spectrum is evaluated for varying particle momentum thresholds, by folding the measured fluctuations with steeply falling spectra
Midrapidity antiproton-to-proton ratio in pp collisons root s=0.9 and 7 TeV measured by the ALICE experiment
The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at root s = 0.9 and 7 TeV during the initial running periods of the Large Hadron Collider. The measurement covers the transverse momentum interval 0.45 < p(t) < 1.05 GeV/c and rapidity vertical bar y vertical bar < 0.5. The ratio is measured to be R-vertical bar y vertical bar<0.5 = 0.957 +/- 0.006(stat) +/- 0.0014(syst) at 0.9 Tev and R-vertical bar y vertical bar<0.5 = 0.991 +/- 0.005 +/- 0.014(syst) at 7 TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions
Femtoscopy of pp collisions at √s=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations
We report on the high statistics two-pion correlation functions from pp collisions at root s = 0.9 TeV and root s = 7 TeV, measured by the ALICE experiment at the Large Hadron Collider. The correlation functions as well as the extracted source radii scale with event multiplicity and pair momentum. When analyzed in the same multiplicity and pair transverse momentum range, the correlation is similar at the two collision energies. A three-dimensional femtoscopic analysis shows an increase of the emission zone with increasing event multiplicity as well as decreasing homogeneity lengths with increasing transverse momentum. The latter trend gets more pronounced as multiplicity increases. This suggests the development of space-momentum correlations, at least for collisions producing a high multiplicity of particles. We consider these trends in the context of previous femtoscopic studies in high-energy hadron and heavy-ion collisions and discuss possible underlying physics mechanisms. Detailed analysis of the correlation reveals an exponential shape in the outward and longitudinal directions, while the sideward remains a Gaussian. This is interpreted as a result of a significant contribution of strongly decaying resonances to the emission region shape. Significant nonfemtoscopic correlations are observed, and are argued to be the consequence of "mini-jet"-like structures extending to low p(t). They are well reproduced by the Monte-Carlo generators and seen also in pi(+)pi(-) correlations
