7,870 research outputs found

    The efficacy of transcranial current stimulation techniques to modulate resting-state EEG, to affect vigilance and to promote sleepiness

    Get PDF
    Transcranial Current Stimulations (tCSs) are non-invasive brain stimulation techniques which modulate cortical excitability and spontaneous brain activity by the application of weak electric currents through the scalp, in a safe, economic, and well-tolerated manner. The direction of the cortical effects mainly depend on the polarity and the waveform of the applied current. The aim of the present work is to provide a broad overview of recent studies in which tCS has been applied to modulate sleepiness, sleep, and vigilance, evaluating the efficacy of different stimulation techniques and protocols. In recent years, there has been renewed interest in these stimulations and their ability to affect arousal and sleep dynamics. Furthermore, we critically review works that, by means of stimulating sleep/vigilance patterns, in the sense of enhancing or disrupting them, intended to ameliorate several clinical conditions. The examined literature shows the efficacy of tCSs in modulating sleep and arousal pattern, likely acting on the top-down pathway of sleep regulation. Finally, we discuss the potential application in clinical settings of this neuromodulatory technique as a therapeutic tool for pathological conditions characterized by alterations in sleep and arousal domains and for sleep disorders per se

    Crime without punishment: An update review of the determinants of cheating among university students

    Get PDF
    The issue of cheating is a serious problem since it can call the efficiency of an education system into question. Furthermore, it is a devaluing factor in the country's stock of human capital. A student who copies is a free-rider, in the sense that he/she gains a higher grade than that merited by the actual amount of effort expended on study. In addition, it makes it impossible for teachers to fully achieve the goal of effective dissemination to, and acquisition of knowledge by, students. This paper conceptually and methodologically systematizes the phenomenon of academic fraud. Distinct forms of theorizing illegal behaviours are examined, adapting Becker’s crime model (1968) to cheating. A systematic review of the literature has allowed certain direct determinants of the probability of “copying”, not yet investigated, to be identified, viz: 1) the ‘advantages’, in terms of a higher grade, that students see themselves as gaining from fraudulent behaviour in comparison with not indulging in it; 2) the breakdown of students’ grades by nature of discipline - “reasoning” versus “cramming”; and 3) the existence or otherwise of a code of honour in universities. As a result, this paper proposes a new, ‘expanded’, econometric specification for estimating cheating (i.e., the probability of “copying”) based on an analysis of the expected cost-benefit, according to Becker’s model.crime, cheating, university, human capital

    EEG oscillations during sleep and dream recall. State- or trait-like individual differences?

    Get PDF
    Dreaming represents a peculiar form of cognitive activity during sleep. On the basis of the well-known relationship between sleep and memory, there has been a growing interest in the predictive role of human brain activity during sleep on dream recall. Neuroimaging studies indicate that rapid eye movement (REM) sleep is characterized by limbic activation and prefrontal cortex deactivation. This pattern could explain the presence of emotional contents in dream reports. Furthermore, the morphoanatomical measures of amygdala and hippocampus predict some features of dream contents (bizarreness, vividness, and emotional load). More relevant for a general view of dreaming mechanisms, empirical data from neuropsychological and electroencephalographic (EEG) studies support the hypothesis that there is a sort of continuity between the neurophysiological mechanisms of encoding and retrieval of episodic memories across sleep and wakefulness. A notable overlap between the electrophysiological mechanisms underlying emotional memory formation and some peculiar EEG features of REM sleep has been suggested. In particular, theta (5–8 Hz) EEG oscillations on frontal regions in the pre-awakening sleep are predictive of dream recall, which parallels the predictive relation during wakefulness between theta activity and successful retrieval of episodic memory. Although some observations support an interpretation more in terms of an intraindividual than interindividual mechanism, the existing empirical evidence still precludes from definitely disentangling if this relation is explained by state- or trait-like differences

    Review Of Si No Fuera Por La Lluvia: Milton Rogovin En Chile By C. Trujillo

    Get PDF

    Rubén Darío en el último verso de Antonio Machado

    Get PDF
    Sin resume

    State- or trait-like individual differences in dream recall. Preliminary findings from a within-subjects study of multiple nap REM sleep awakenings

    Get PDF
    We examined the question whether the role of EEG oscillations in predicting presence/absence of dream recall (DR) is explained by "state-" or "trait-like" factors. Six healthy subjects were awakened from REM sleep in a within-subjects design with multiple naps, until a recall and a non-recall condition were obtained. Naps were scheduled in the early afternoon and were separated by 1 week. Topographical EEG data of the 5-min of REM sleep preceding each awakening were analyzed by power spectral analysis [Fast Fourier Transform (FFT)] and by a method to detect oscillatory activity [Better OSCillations (BOSC)]. Both analyses show that REC is associated to higher frontal theta activity (5-7 Hz) and theta oscillations (6.06 Hz) compared to NREC condition, but only the second comparison reached significance. Our pilot study provides support to the notion that sleep and wakefulness share similar EEG correlates of encoding in episodic memories, and supports the "state-like hypothesis": DR may depend on the physiological state related to the sleep stage from which the subject is awakened rather than on a stable individual EEG pattern

    Oscillatory EEG activity during REM sleep in elderly people predicts subsequent dream recall after awakenings

    Get PDF
    Several findings underlined that the electrophysiological (EEG) background of the last segment of sleep before awakenings may predict the presence/absence of dream recall (DR) in young subjects. However, little is known about the EEG correlates of DR in elderly people. Only an investigation found differences between recall and non-recall conditions during NREM sleep EEG in older adults, while—surprisingly—no EEG predictor of DR was found for what concerns REMsleep. Considering REMsleep as a privileged scenario to produce mental sleep activity related to cognitive processes, our study aimed to investigate whether specific EEG topography and frequency changes during REM sleep in elderly people may predict a subsequent recall of mental sleep activity. Twenty-one healthy older volunteers (mean age 69.2 ± 6.07 SD) and 20 young adults (mean age 23.4 ± 2.76 SD) were recorded for one night from19 scalp derivations. Dreams were collected upon morning awakenings from REM sleep. EEG signals of the last 5min were analyzed by the Better OSCillation algorithm to detect the peaks of oscillatory activity in both groups. Statistical comparisons revealed that older as well as young individuals recall their dream experience when the last segment of REM sleep is characterized by frontal theta oscillations. No Recall (Recall vs. Non-Recall) × Age (Young vs. Older) interaction was found. This result replicated the previous evidence in healthy young subjects, as shown in within- and between-subjects design. The findings are completely original for older individuals, demonstrating that theta oscillations are crucial for the retrieval of dreaming also in this population. Furthermore, our results did not confirm a greater presence of the theta activity in healthy aging. Conversely, we found a greater amount of rhythmic theta and alpha activity in young than older participants. It is worth noting that the theta oscillations detected are related to cognitive functioning. We emphasize the notion that the oscillatory theta activity should be distinguished from the non-rhythmic theta activity identified in relation to other phenomena such as (a) sleepiness and hypoarousal conditions during the waking state and (b) cortical slowing, considered as an EEG alteration in clinical samples

    Leptogenesis in Δ(27)\Delta(27) with a Universal Texture Zero

    Full text link
    We investigate the possibility of viable leptogenesis in an appealing Δ(27)\Delta(27) model with a universal texture zero in the (1,1) entry. The model accommodates the mass spectrum, mixing and CP phases for both quarks and leptons and allows for grand unification. Flavoured Boltzmann equations for the lepton asymmetries are solved numerically, taking into account both N1N_1 and N2N_2 right-handed neutrino decays. The N1N_1-dominated scenario is successful and the most natural option for the model, with M1[109,1012]M_1 \in [10^9, 10^{12}] GeV, and M1/M2[0.002,0.1]M_1/M_2 \in [0.002, 0.1], which constrains the parameter space of the underlying model and yields lower bounds on the respective Yukawa couplings. Viable leptogenesis is also possible in the N2N_2-dominated scenario, with the asymmetry in the electron flavour protected from N1N_1 washout by the texture zero. However, this occurs in a region of parameter space which has a stronger mass hierarchy M1/M2<0.002M_1/M_2 < 0.002 , and M2M_2 relatively close to M3M_3, which is not a natural expectation of the Δ(27)\Delta(27) model.Comment: v2: 20 pages, 2 figures. Version accepted in JHE

    Mental sleep activity and disturbing dreams in the lifespan

    Get PDF
    Sleep significantly changes across the lifespan, and several studies underline its crucial role in cognitive functioning. Similarly, mental activity during sleep tends to covary with age. This review aims to analyze the characteristics of dreaming and disturbing dreams at dierent age brackets. On the one hand, dreams may be considered an expression of brain maturation and cognitive development, showing relations with memory and visuo-spatial abilities. Some investigations reveal that specific electrophysiological patterns, such as frontal theta oscillations, underlie dreams during sleep, as well as episodic memories in the waking state, both in young and older adults. On the other hand, considering the role of dreaming in emotional processing and regulation, the available literature suggests that mental sleep activity could have a beneficial role when stressful events occur at dierent age ranges. We highlight that nightmares and bad dreams might represent an attempt to cope the adverse events, and the degrees of cognitive-brain maturation could impact on these mechanisms across the lifespan. Future investigations are necessary to clarify these relations. Clinical protocols could be designed to improve cognitive functioning and emotional regulation by modifying the dream contents or the ability to recall/non-recall them
    corecore