5,513 research outputs found

    La regulación de la publicidad televisada y del patrocinio de programas en el ámbito europeo

    Get PDF

    Ante el V Centenario. De Edificación en las Crónicas de la Conquista (II)

    Get PDF

    De edificación en las crónicas de la conquista (IV)

    Get PDF

    The Speed of Light and the Hubble Parameter: The Mass-Boom Effect

    Get PDF
    We prove here that Newtons universal gravitation and momentum conservation laws together reproduce Weinbergs relation. It is shown that the Hubble parameter H must be built in this relation, or equivalently the age of the Universe t. Using a wave-to-particle interaction technique we then prove that the speed of light c decreases with cosmological time, and that c is proportional to the Hubble parameter H. We see the expansion of the Universe as a local effect due to the LAB value of the speed of light co taken as constant. We present a generalized red shift law and find a predicted acceleration for photons that agrees well with the result from Pioneer 10/11 anomalous acceleration. We finally present a cosmological model coherent with the above results that we call the Mass-Boom. It has a linear increase of mass m with time as a result of the speed of light c linear decrease with time, and the conservation of momentum mc. We obtain the baryonic mass parameter equal to the curvature parameter, omega m = omega k, so that the model is of the type of the Einstein static, closed, finite, spherical, unlimited, with zero cosmological constant. This model is the cosmological view as seen by photons, neutrinos, tachyons etc. in contrast with the local view, the LAB reference. Neither dark matter nor dark energy is required by this model. With an initial constant speed of light during a short time we get inflation (an exponential expansion). This converts, during the inflation time, the Plancks fluctuation length of 10-33 cm to the present size of the Universe (about 1028 cm, constant from then on). Thereafter the Mass-Boom takes care to bring the initial values of the Universe (about 1015 gr) to the value at the present time of about 1055 gr.Comment: 15 pages, presented at the 9th Symposium on "Frontiers of Fundamental Physics", 7-9 Jan. 2008, University of Udine, Italy. Changed content

    Andreev reflection in Si-engineered Al/InGaAs hybrid junctions

    Full text link
    Andreev-reflection dominated transport is demonstrated in Al/n-In0.38Ga0.62As superconductor-semiconductor junctions grown by molecular beam epitaxy on GaAs(001). High junction transparency was achieved in low-doped devices by exploiting Si interface bilayers to suppress the native Schottky barrier. It is argued that this technique is ideally suited for the fabrication of ballistic transport hybrid microstructures.Comment: 9 REVTEX pages + 3 postscript figures, to be published in APL 73, (28dec98

    Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures

    Full text link
    [EN] Computer clusters are widely used platforms to execute different computational workloads. Indeed, the advent of virtualization and Cloud computing has paved the way to deploy virtual elastic clusters on top of Cloud infrastructures, which are typically backed by physical computing clusters. In turn, the advances in Green computing have fostered the ability to dynamically power on the nodes of physical clusters as required. Therefore, this paper introduces an open-source framework to deploy elastic virtual clusters running on elastic physical clusters where the computing capabilities of the virtual clusters are dynamically changed to satisfy both the user application's computing requirements and to minimise the amount of energy consumed by the underlying physical cluster that supports an on-premises Cloud. For that, we integrate: i) an elasticity manager both at the infrastructure level (power management) and at the virtual infrastructure level (horizontal elasticity); ii) an automatic Virtual Machine (VM) consolidation agent that reduces the amount of powered on physical nodes using live migration and iii) a vertical elasticity manager to dynamically and transparently change the memory allocated to VMs, thus fostering enhanced consolidation. A case study based on real datasets executed on a production infrastructure is used to validate the proposed solution. The results show that a multi-elastic virtualized datacenter provides users with the ability to deploy customized scalable computing clusters while reducing its energy footprint.The results of this work have been partially supported by ATMOSPHERE (Adaptive, Trustworthy, Manageable, Orchestrated, Secure, Privacy-assuring Hybrid, Ecosystem for Resilient Cloud Computing), funded by the European Commission under the Cooperation Programme, Horizon 2020 grant agreement No 777154.Alfonso Laguna, CD.; Caballer Fernández, M.; Calatrava Arroyo, A.; Moltó, G.; Blanquer Espert, I. (2018). Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures. Journal of Grid Computing. 17(1):191-204. https://doi.org/10.1007/s10723-018-9449-zS191204171Buyya, R.: High Performance Cluster Computing: Architectures and Systems. Prentice Hall PTR, Upper Saddle River (1999)de Alfonso, C., Caballer, M., Alvarruiz, F., Moltó, G.: An economic and energy-aware analysis of the viability of outsourcing cluster computing to the cloud. Futur. Gener. Comput. Syst. (Int. J. Grid Comput eScience) 29, 704–712 (2013). https://doi.org/10.1016/j.future.2012.08.014Williams, D., Jamjoom, H., Liu, Y.H., Weatherspoon, H.: Overdriver: handling memory overload in an oversubscribed cloud. ACM SIGPLAN Not. 46(7), 205 (2011). https://doi.org/10.1145/2007477.1952709 . http://dl.acm.org/citation.cfm?id=2007477.1952709Valentini, G., Lassonde, W., Khan, S., Min-Allah, N., Madani, S., Li, J., Zhang, L., Wang, L., Ghani, N., Kolodziej, J., Li, H., Zomaya, A., Xu, C.Z., Balaji, P., Vishnu, A., Pinel, F., Pecero, J., Kliazovich, D., Bouvry, P.: An overview of energy efficiency techniques in cluster computing systems. Clust. Comput. 16(1), 3–15 (2013). https://doi.org/10.1007/s10586-011-0171-xDe Alfonso, C., Caballer, M., Hernández, V.: Efficient power management in high performance computer clusters. In: Proceedings of the 1st International Multi-conference on Innovative Developments in ICT, Proceedings of the International Conference on Green Computing 2010 (ICGreen 2010), 39–44 (2010)OpenNebula: OpenNebula Cloud Software https://opennebula.org/ . [Online; accessed 12-June-2017]OpenStack: OpenStack Cloud Software. http://openstack.org . [Online; accessed 12 June 2017]VMWare: VMWare vCenter Server. https://www.vmware.com/products/vcenter-server.html . [Online; accessed 12 June 2017]De Alfonso, C., Blanquer, I.: Automatic consolidation of virtual machines in on-premises cloud platforms. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp 1070–1079 (2017). https://doi.org/10.1109/CCGRID.2017.128Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters in a grid site manager. In: Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing, HPDC ’03, p 90. IEEE Computer Society, Washington, DC (2003). http://dl.acm.org/citation.cfm?id=822087.823392Doelitzscher, F., Held, M., Reich, C., Sulistio, A.: Viteraas: Virtual cluster as a service. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), pp 652–657 (2011). https://doi.org/10.1109/CloudCom.2011.101Wei, X., Wang, H., Li, H., Zou, L.: Dynamic deployment and management of elastic virtual clusters. In: 2011 Sixth Annual Chinagrid Conference (ChinaGrid), pp 35–41 (2011). https://doi.org/10.1109/ChinaGrid.2011.31de Assuncao, M.D., di Costanzo, A., Buyya, R.: Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters. In: Proceedings of the 18th ACM International Symposium on High Performance Distributed Computing, HPDC ’09, pp 141–150. ACM, New York (2009). https://doi.org/10.1145/1551609.1551635 . http://doi.acm.org/10.1145/1551609.1551635Marshall, P., Keahey, K., Freeman, T.: Elastic site: Using clouds to elastically extend site resources. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp 43–52 (2010). https://doi.org/10.1109/CCGRID.2010.80Niu, S., Zhai, J., Ma, X., Tang, X., Chen, W.: Cost-effective cloud hpc resource provisioning by building semi-elastic virtual clusters. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13, pp 56:1–56:12. ACM, New York (2013). https://doi.org/10.1145/2503210.2503236 . http://doi.acm.org/10.1145/2503210.2503236Bialecki, A., Cafarella, M., Cutting, D., Omalley, O.: Hadoop: a framework for running applications on large clusters built of commodity hardware. Tech. rep. Apache Hadoop. http://hadoop.apache.org (2005)MIT: StarCluster Elastic Load Balancer. http://web.mit.edu/stardev/cluster/docs/0.92rc2/manual/load_balancer.htmlAppliance, C.C.S.: Creating elastic virtual clusters. http://cernvm.cern.ch/portal/elasticclusters (2015)Research project, T.G.: The games research project. http://www.green-datacenters.eu (2013)Cioara, T., Anghel, I., Salomie, I., Copil, G., Moldovan, D., Kipp, A.: Energy aware dynamic resource consolidation algorithm for virtualized service centers based on reinforcement learning. In: 2011 10th International Symposium on Parallel and Distributed Computing (ISPDC), pp 163–169 (2011). https://doi.org/10.1109/ISPDC.2011.32Farahnakian, F., Liljeberg, P., Plosila, J.: Energy-efficient virtual machines consolidation in cloud data centers using reinforcement learning. In: 2014 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp 500–507 (2014). https://doi.org/10.1109/PDP.2014.109Masoumzadeh, S., Hlavacs, H.: Integrating vm selection criteria in distributed dynamic vm consolidation using fuzzy q-learning. In: 2013 9th International Conference on Network and Service Management (CNSM), pp 332–338 (2013). https://doi.org/10.1109/CNSM.2013.6727854Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In: 2011 12th IEEE/ACM International Conference on Grid Computing (GRID), pp 26–33 (2011). https://doi.org/10.1109/Grid.2011.13Pop, C.B., Anghel, I., Cioara, T., Salomie, I., Vartic, I.: A swarm-inspired data center consolidation methodology. In: Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics, WIMS ’12, pp 41:1–41:7. ACM, New York (2012). https://doi.org/10.1145/2254129.2254180Marzolla, M., Babaoglu, O., Panzieri, F.: Server consolidation in clouds through gossiping. In: Proceedings of the 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WOWMOM ’11, pp 1–6. IEEE Computer Society, Washington, DC (2011). https://doi.org/10.1109/WoWMoM.2011.5986483Ghafari, S., Fazeli, M., Patooghy, A., Rikhtechi, L.: Bee-mmt: A load balancing method for power consumption management in cloud computing. In: 2013 Sixth International Conference on Contemporary Computing (IC3), pp 76–80 (2013). https://doi.org/10.1109/IC3.2013.6612165Ajiro, Y., Tanaka, A.: Improving packing algorithms for server consolidation. In: International CMG Conference, pp. 399–406. Computer Measurement Group (2007)Verma, A., Ahuja, P., Neogi, A.: pmapper: power and migration cost aware application placement in virtualized systems. In: Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, Middleware ’08, pp 243–264. Springer, New York (2008)Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28 (5), 755–768 (2012). https://doi.org/10.1016/j.future.2011.04.017Guazzone, M., Anglano, C., Canonico, M.: Exploiting vm migration for the automated power and performance management of green cloud computing systems. In: Proceedings of the First International Conference on Energy Efficient Data Centers, E2DC’12, pp 81–92. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-33645-4_8Shi, L., Furlong, J., Wang, R.: Empirical evaluation of vector bin packing algorithms for energy efficient data centers. In: 2013 IEEE Symposium on Computers and Communications (ISCC), pp 000,009–000,015 (2013). https://doi.org/10.1109/ISCC.2013.6754915Tomás, L., Tordsson, J.: Improving cloud infrastructure utilization through overbooking. In: Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference on - CAC ’13, p 1. ACM Press, New York (2013). https://doi.org/10.1145/2494621.2494627Dawoud, W., Takouna, I., Meinel, C.: Elastic vm for cloud resources provisioning optimization. In: Abraham, A., Lloret Mauri, J., Buford, J., Suzuki, J., Thampi, S. (eds.) Advances in Computing and Communications, Communications in Computer and Information Science, vol. 190, pp 431–445. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-22709-7_43Tasoulas, E., Haugerund, H.R., Begnum, K.: Bayllocator: a proactive system to predict server utilization and dynamically allocate memory resources using Bayesian networks and ballooning. In: Proceedings of the 26th International Conference on Large Installation System Administration: Strategies, Tools, and Techniques, pp. 111–122. USENIX Association (2012)Hines, M.R., Gordon, A., Silva, M., Da Silva, D., Ryu, K., Ben-Yehuda, M.: Applications know best: performance-driven memory overcommit with Ginkgo. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science, pp. 130–137. IEEE. https://doi.org/10.1109/CloudCom.2011.27 (2011)Litke, A.: Manage resources on overcommitted KVM hosts. Tech. rep. IBM. http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/ (2011)De Alfonso, C., Caballer, M., Alvarruiz, F., Hernández, V.: An energy management system for cluster infrastructures. Comput. Electr. Eng. 39(8), 2579–2590 (2013). https://doi.org/10.1016/j.compeleceng.2013.05.004Moltó, G., Caballer, M, de Alfonso, C.: Automatic memory-based vertical elasticity and oversubscription on cloud platforms. Futur. Gener. Comput. Syst. 56, 1–10 (2016). https://doi.org/10.1016/j.future.2015.10.002Calatrava, A., Romero, E., Moltó, G., Caballer, M., Alonso, J.M.: Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Futur. Gener. Comput. Syst. 61, 13–25 (2016). https://doi.org/10.1016/j.future.2016.01.018 . http://authors.elsevier.com/sd/article/S0167739X16300024 , http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024Caballer, M., Chatziangelou, M., Calatrava, A., Moltó, G., Pérez, A.: IM integration in the EGI VMOps Dashboard. In: EGI Conference 2017 and INDIGO Summit 2017 (2017)Calatrava, A., Caballer, M., Moltó, G., Pérez, A.: Virtual Elastic Clusters in the EGI LToS with EC3. In: EGI Conference 2017 and INDIGO Summit 2017 (2017)Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.: The grid workloads archive. Futur. Gener. Comput. Syst. 24(7), 672–686 (2008). https://doi.org/10.1016/j.future.2008.02.003 . http://www.sciencedirect.com/science/article/pii/S0167739X08000125Nordugrid dataset, the grid workloads archive (Online; accessed 27-March-2017). http://gwa.ewi.tudelft.nl/datasets/gwa-t-3-nordugrid/report/Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C: Dynamic Management of Virtual Infrastructures. J. Grid Comput. 13, 53–70 (2015). https://doi.org/10.1007/s10723-014-9296-5 . http://link.springer.com/article/10.1007/s10723-014-9296-

    Spitzer-IRS high resolution spectroscopy of the 12\mu m Seyfert galaxies: I. First results

    Full text link
    The first high resolution Spitzer IRS 9-37um spectra of 29 Seyfert galaxies (about one quarter) of the 12um Active Galaxy Sample are presented and discussed. The high resolution spectroscopy was obtained with corresponding off-source observations. This allows excellent background subtraction, so that the continuum levels and strengths of weak emission lines are accurately measured. The result is several new combinations of emission line ratios, line/continuum and continuum/continuum ratios that turn out to be effective diagnostics of the strength of the AGN component in the IR emission of these galaxies. The line ratios [NeV]/[NeII], [OIV]/[NeII], already known, but also [NeIII]/[NeII] and [NeV]/[SiII] can all be effectively used to measure the dominance of the AGN. We extend the analysis, already done using the 6.2um PAH emission feature, to the equivalent width of the 11.25um PAH feature, which also anti-correlates with the dominance of the AGN. We measure that the 11.25um PAH feature has a constant ratio with the H_2 S(1) irrespective of Seyfert type, approximately 10 to 1. Using the ratio of accurate flux measurements at about 19um with the two spectrometer channels, having aperture areas differing by a factor 4, we measured the source extendness and correlated it with the emission line and PAH feature equivalent widths. The extendness of the source gives another measure of the AGN dominance and correlates both with the EWs of [NeII] and PAH emission. Using the rotational transitions of H2_2 we were able to estimate temperatures (200-300K) and masses (1-10 x 10^6 M_sun), or significant limits on them, for the warm molecular component in the galaxies observed.Comment: submitted to ApJ, Aug.2007, revised, in the refereeing proces

    Smart Antenna Systems Model Simulation Design for 5G Wireless Network Systems

    Get PDF
    The most recent antenna array technologies such as smart antenna systems (SAS) and massive multiple input multiple output (MIMO) systems are giving a strong increasing impact relative to 5G wireless communication systems due to benefits that they could introduce in terms of performance improvements with respect to omnidirectional antennas. Although a considerable number of theoretical proposals already exist in this field, the most common used network simulators do not implement the latest wireless network standards and, consequently, they do not offer the possibility to emulate scenarios in which SAS or massive MIMO systems are employed. This aspect heavily affects the quality of the network performance analysis with regard to the next generation wireless communication systems. To overcome this issue, it is possible, for example, to extend the default features offered by one of the most used network simulators such as Omnet++ which provides a very complete suite of network protocols and patterns that can be adapted in order to support the latest antenna array systems. The main goal of the present chapter is to illustrate the improvements accomplished in this field allowing to enhance the basic functionalities of the Omnet++ simulator by implementing the most modern antenna array technologies

    Structural Achitecture of the Madrid Basin from 3D Gravity Inversion

    Get PDF
    The Madrid Basin is an intraplate Cenozoic basin located in the central area of the Iberian Peninsula. Basement is characterized by a wide range of lithologies, from meta-sediments to granites. Sedimentary section is associated with a carbonatic platform in Cretaceous time and with continental environments during Tertiary. During the second half of the last century 2D seismic data was acquired and some wells were drilled by several oil & gas companies. Due to the lack of refraction seismic, the geometry of the Moho is not very well-known in the area. This study presents the results of the 3D gravity inversion performed mainly to determine the configuration of the Moho. Also, the geometry of basement has been refined after the inversion. The initial model was constrained by surface geology, 2D seismic and well data. The final 3D model shows significant density variations within the basement and the presence of an intra-basement structure in the Central Iberian System
    corecore