3 research outputs found

    Порядок исследования доказательств судом апелляционной инстанции по УПК РФ

    Get PDF
    The objectives of precision medicine are to better match patient characteristics with the therapeutic intervention to optimize the chances of beneficial actions while reducing the exposure to unneeded adverse drug experiences. In a retrospective genome-wide association study of the overall neutral placebo-controlled dal-Outcomes trial, the effect of the cholesteryl ester transfer protein (CETP) modulator dalcetrapib on the composite of cardiovascular death, myocardial infarction or stroke was found to be influenced by a polymorphism in the adenylate cyclase type 9 (ADCY9) gene. Whereas patients with the AA genotype at position rs1967309 experienced fewer cardiovascular events with dalcetrapib, those with the GG genotype had an increased rate and the heterozygous AG genotype exhibited no difference from placebo. Measurements of cholesterol efflux and C-reactive protein (CRP) offered directionally supportive genotype-specific findings. In a separate, smaller, placebo-controlled trial, regression of ultrasonography-determined carotid intimal-medial thickness was only observed in dalcetrapib-treated patients with the AA genotype. Collectively, these observations led to the hypothesis that the cardiovascular effects of dalcetrapib may be pharmacogenetically determined, with a favorable benefit-risk ratio only for patients with this specific genotype. We describe below the design of dal-GenE, a precision medicine, placebo-controlled clinical outcome trial of dalcetrapib in patients with a recent acute myocardial infarction with the unique feature of selecting only those with the AA genotype at rs1967309 in the ADCY9 gene

    Pharmacogenetics-guided dalcetrapib therapy after an acute coronary syndrome: the dal-GenE trial

    Get PDF
    Aims: In a retrospective analysis of dal-Outcomes, the effect of dalcetrapib on cardiovascular events was influenced by an adenylate cyclase type 9 (ADCY9) gene polymorphism. The dal-GenE study was conducted to test this pharmacogenetic hypothesis. Methods and results: dal-GenE was a double-blind trial in patients with an acute coronary syndrome within 1–3 months and the AA genotype at variant rs1967309 in the ADCY9 gene. A total of 6147 patients were randomly assigned to receive dalcetrapib 600 mg or placebo daily. The primary endpoint was the time from randomization to first occurrence of cardiovascular death, resuscitated cardiac arrest, non-fatal myocardial infarction, or non-fatal stroke. After a median follow-up of 39.9 months, the primary endpoint occurred in 292 (9.5%) of 3071 patients in the dalcetrapib group and 327 (10.6%) of 3076 patients in the placebo group [hazard ratio 0.88; 95% confidence interval (CI) 0.75–1.03; P = 0.12]. The hazard ratios for the components of the primary endpoint were 0.79 (95% CI 0.65–0.96) for myocardial infarction, 0.92 (95% CI 0.64–1.33) for stroke, 1.21 (95% CI 0.91–1.60) for death from cardiovascular causes, and 2.33 (95% CI 0.60–9.02) for resuscitated cardiac arrest. In a pre-specified on-treatment sensitivity analysis, the primary endpoint event rate was 7.8% (236/3015) in the dalcetrapib group and 9.3% (282/3031) in the placebo group (hazard ratio 0.83; 95% CI 0.70–0.98). Conclusion: Dalcetrapib did not significantly reduce the risk of occurrence of the primary endpoint of ischaemic cardiovascular events at end of study. A new trial would be needed to test the pharmacogenetic hypothesis that dalcetrapib improves the prognosis of patients with the AA genotype
    corecore