396 research outputs found

    Returning children home from care: What can be learned from local authority data?

    Get PDF
    International Human Rights and child rights conventions as well as U.K. wide legislation and guidance require that children in care should be returned home to one or both parents wherever possible. Reunification with parents is the most common route out of care, but rates of re‐entry are often higher than for other exit routes. This study used 8 years of administrative data (on 2,208 care entrants), collected by one large English local authority, to examine how many children were returned home and to explore factors associated with stable reunification (not re‐entering care for at least 2 years). One‐third of children (36%) had been reunified, with adolescent entrants being the most likely age group to return home. Three quarters (75%) of reunified children had a stable reunification. In a fully adjusted regression model, age at entry, being on a care order prior to return home, staying longer in care, being of minority ethnicity, and having fewer placements in care were all significant in predicting chances of stable reunification. The results underline the importance of properly resourcing reunification services. The methods demonstrate the value to local authorities of analysing their own data longitudinally to understand the care pathways for children they look after

    Making a home, finding a job: investigating early housing and employment outcomes for young people leaving care

    Get PDF
    This paper presents findings from a new study of outcomes for young people leaving care funded by the Department for Education and Skills. It reports findings for a sample of 106 young people in relation to progress made in housing and employment some 12-15 months after leaving care. The generally poor employment outcomes of care leavers are acknowledged, but ingredients that make for success are also highlighted, including the value of settled care and post-care careers, sound career planning and, significantly, the value of delaying young people's transitions from care. Early career paths also interconnect with how young people fare in housing, in developing life skills and with other problems in their lives after leaving care. Housing outcomes were more encouraging and predominantly shaped by events after leaving care, and faring well in housing was the factor most closely associated with positive mental well-being in young people. Some groups that are at risk of faring badly are identified, including young people with mental-health problems, young people with persistent offending or substance misuse problems and, in some respects, young disabled people. The implications of these findings for leaving care services are considered

    Constraints on cosmic strings using data from the first Advanced LIGO observing run

    Get PDF
    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider

    Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817

    Get PDF
    The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (≲1 s) and intermediate-duration (≲500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1-4 kHz is at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is for a millisecond magnetar model, and for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.</p

    Full band all-sky search for periodic gravitational waves in the O1 LIGO data

    Get PDF
    We report on a new all-sky search for periodic gravitational waves in the frequency band 475–2000 Hz and with a frequency time derivative in the range of ½−1.0; þ0.1 × 10−8 Hz=s. Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO’s first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20–475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ∼4 × 10−25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3 × 10−24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ∼1.5 × 10−25

    Directional Limits on Persistent Gravitational Waves from Advanced LIGO’s First Observing Run

    Get PDF
    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory’s (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20–1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα;ΘðfÞ < ð0.1–56Þ × 10−8 erg cm−2 s−1 Hz−1ðf=25 HzÞα−1 depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ωðf; ΘÞ < ð0.39–7.6Þ × 10−8 sr−1ðf=25 HzÞα depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0 < ð6.7; 5.5; and 7.0Þ × 10−25, respectively, at the most sensitive detector frequencies between 130–175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case

    Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

    Get PDF
    We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone

    Perinatal HIV transmission and the cost-effectiveness of screening at 14 weeks gestation, at the onset of labour and the rapid testing of infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preventing HIV transmission is a worldwide public health issue. Vertical transmission of HIV from a mother can be prevented with diagnosis and treatment, but screening incurs cost. The U.S. Virgin Islands follows the mainland policy on antenatal screening for HIV even though HIV prevalence is higher and rates of antenatal care are lower. This leads to many cases of vertically transmitted HIV. A better policy is required for the U.S. Virgin Islands.</p> <p>Methods</p> <p>The objective of this research was to estimate the cost-effectiveness of relevant HIV screening strategies for the antenatal population in the U.S. Virgin Islands. An economic model was used to evaluate the incremental costs and incremental health benefits of nine different combinations of perinatal HIV screening strategies as compared to existing practice from a societal perspective. Three opportunities for screening were considered in isolation and in combination: by 14 weeks gestation, at the onset of labor, or of the infant after birth. The main outcome measure was the cost per life year gained (LYG).</p> <p>Results</p> <p>Results indicate that all strategies would produce benefits and save costs. Universal screening by 14 weeks gestation and screening the infant after birth is the recommended strategy, with cost savings of $1,122,787 and health benefits of 310 LYG. Limitations include the limited research on the variations in screening acceptance of screening based on specimen sample, race and economic status. The benefits of screening after 14 weeks gestation but before the onset of labor were also not addressed.</p> <p>Conclusion</p> <p>This study highlights the benefits of offering screening at different opportunities and repeat screening and raises the question of generalizing these results to other countries with similar characteristics.</p

    GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

    Get PDF
    We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1  M⊙ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6−0.7+3.2  M⊙ and 84.4−11.1+15.8  M⊙ and range in distance between 320−110+120 and 2840−1360+1400  Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110−3840  Gpc−3 y−1 for binary neutron stars and 9.7−101  Gpc−3 y−1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610  Gpc−3 y−1
    corecore