2,194 research outputs found

    The relationship between the phonological strategies employed In reading and spelling

    Full text link
    This paper summarises a longitudinal study which examined the relationship between the abilities of young children to read and spell phonologically. Empirical evidence of Bryant and Bradley (1980) and Cataldo and Ellis (1988) to show that children acquire the ability to use a phonological strategy for spelling before the ability to use an equivalent strategy for reading is confirmed. Implications for the teaching of reading are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73266/1/j.1467-9817.1991.tb00011.x.pd

    Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

    Get PDF
    Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer’s dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1  dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%–8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded

    Risk of infection following semi-invasive ultrasound procedures in Scotland, 2010 to 2016:A retrospective cohort study using linked national datasets

    Get PDF
    Introduction Outbreak reports indicate a risk of cross-infection following medical procedures using semi-invasive ultrasound probes. This study aimed to evaluate the risk of infection, using microbiological reports and antibiotic prescriptions as proxy measures, associated with semi-invasive ultrasound probe procedures, including transoesophageal echocardiography, transvaginal and transrectal ultrasound. Methods Patient records from the Electronic Communication of Surveillance in Scotland and the Prescribing Information System were linked with the Scottish Morbidity Records for cases in Scotland between 2010 and 2016. Three retrospective cohorts were created to include inpatients/day-cases and outpatients in the following specialties: Cardiology, Gynaecology and Urology. Cox regression was used to quantify the association between semi-invasive ultrasound probe procedures and the risk of positive microbiological reports and community antibiotic prescriptions in the 30-day period following the procedure. Results There was a greater hazard ratio of microbiological reports for patients who had undergone transoesophageal echocardiography (HR: 4.92; 95% CI: 3.17–7.63), transvaginal (HR: 1.41; 95% CI: 1.21–1.64) and transrectal ultrasound (HR: 3.40; 95% CI: 2.90–3.99), compared with unexposed cohort members after adjustment for age, co-morbidities, previous hospital admissions and past care home residence. Similarly, there was a greater hazard ratio of antibiotic prescribing for those who had received transvaginal (HR: 1.26; 95% CI: 1.20–1.32) and transrectal (HR: 1.75; 95% CI: 1.66–1.84) ultrasound, compared with unexposed patients. Conclusion Analysis of linked national datasets demonstrated a greater risk of infection within 30 days of undergoing semi-invasive ultrasound probe procedures, using microbiological reports and antibiotic prescriptions as proxy measures of infection

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Constraints on cosmic strings using data from the first Advanced LIGO observing run

    Get PDF
    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider
    corecore