26 research outputs found
Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817
The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (≲1 s) and intermediate-duration (≲500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1-4 kHz is at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is for a millisecond magnetar model, and for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.</p
Constraints on cosmic strings using data from the first Advanced LIGO observing run
Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider
Full band all-sky search for periodic gravitational waves in the O1 LIGO data
We report on a new all-sky search for periodic gravitational waves in the frequency band 475–2000 Hz and with a frequency time derivative in the range of ½−1.0; þ0.1 × 10−8 Hz=s. Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO’s first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20–475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ∼4 × 10−25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3 × 10−24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ∼1.5 × 10−25
Properties of the Binary Neutron Star Merger GW170817
On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16 deg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 M⊙ when allowing for large component spins, and to lie between 1.16 and 1.60 M⊙ (with a total mass 2.73−0.01+0.04 M⊙) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Λ are (0,630) when we allow for large component spins, and 300−230+420 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal
GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2
We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10: 11: 58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2(-6.0)(+8.4)M-circle dot and 19.4(-5.9)(+5.3)M(circle dot) (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, chi(eff) =
-0.12(-0.30)(+0.21) . This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880(-390)(+450) Mpc corresponding to a redshift of z = 0.18(-0.07)(+0.08) . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m(g) <= 7.7 x 10(-23) eV/c(2). In all cases, we find that GW170104 is consistent with general relativity
VLBA Polarization monitoring of SiO masers towards late-type stars
Introduction We have been conducting an extensive VLBA monitoring program of the 43 GHz SiO maser emission from the Mira variables TX Cam (d ß 320pc), U Her (d ß 350pc) and R Aqr (d ß 220pc). The data were taken using 4 MHz channels on all 10 VLBA antennas with circular feeds. All four polarization products were generated in 128 spectral channels across the 4 MHz band. Continuum calibrators were observed both for delay, bandpass and polarization calibration. VLA observations of the polarization calibrators were made within a week or two of each VLBA session in order to determine the linear polarization position angle. The data reduction was performed following the recipes laid down by [2] and [5]. Our results on the changing structure in R Aqr are reported elsewhere [1]. Here we report on the the basic observational results obtained on U Her and TX Cam. Preprint submitted to Elsevier Preprint 7 March M
Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO???s First Observing Run
We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 M-circle dot-1.0 M-circle dot using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of nonspinning (0.2 M-circle dot, 0.2 M-circle dot) ultracompact binaries to be less than 1.0 x 10(6) Gpc(-3) yr(-1) and the coalescence rate of a similar distribution of (1.0 M-circle dot, 1.0 M-circle dot) ultracompact binaries to be less than 1.9 x Gpc(-3) yr(-1) (at 90% confidence). Neither black holes nor neutron stars are expected to form below similar to 1 M-circle dot through conventional stellar evolution, though it has been proposed that similarly low mass black holes could be formed primordially through density fluctuations in the early Universe and contribute to the dark matter density. The interpretation of our constraints in the primordial black hole dark matter paradigm is highly model dependent; however, under a particular primordial black hole binary formation scenario we constrain monochromatic primordial black hole populations of 0.2 M-circle dot to be less than 33% of the total dark matter density and monochromatic populations of 1.0 M-circle dot to be less than 5% of the dark matter density. The latter strengthens the presently placed bounds from microlensing surveys of massive compact halo objects (MACHOs) provided by the MACHO and EROS Collaborations
A search for tensor, vector, and scalar polarizations in the stochastic gravitational-wave background
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically-polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy-densities of tensor, vector, and scalar modes at 95% credibility to ΩT0<5.6×10−8, ΩV0<6.4×10−8, and ΩS0<1.1×10−7 at a reference frequency f0=25 Hz.by Anand Sengupta et al
Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data
We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modeled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range 25–, spanning the current observationally constrained range of binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at , with comparable limits set across the most sensitive frequency range from 100 to . At this frequency, the 95% upper limit on the signal amplitude h 0 is marginalized over the unknown inclination angle of the neutron star's spin, and assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3–4 stronger than those set by other analyses of the same data, and a factor of ~7 stronger than the best upper limits set using data from Initial LIGO science runs. In the vicinity of , the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on the inclination angle; if the most likely inclination angle of 44° is assumed, they are within a factor of 1.7
On the Requirements for Successful GPS Spoofing Attacks
An increasing number of wireless applications rely on GPS signals for localization, navigation, and time synchronization. However, civilian GPS signals are known to be susceptible to spoofing attacks which make GPS receivers in range believe that they reside at locations different than their real physical locations. In this paper, we investigate the requirements for successful GPS spoofing attacks on individuals and groups of victims with civilian or military GPS receivers. In particular, we are interested in identifying from which locations and with which precision the attacker needs to generate its signals in order to successfully spoof the receivers. We will show, for example, that any number of receivers can easily be spoofed to one arbitrary location; however, the attacker is restricted to only few transmission locations when spoofing a group of receivers while preserving their constellation. In addition, we investigate the practical aspects of a satellite-lock takeover, in which a victim receives spoofed signals after first being locked on to legitimate GPS signals. Using a civilian GPS signal generator, we perform a set of experiments and find the minimal precision of the attacker's spoofing signals required for covert satellite-lock takeover