35 research outputs found

    Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation

    Get PDF
    In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (LOV) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on LOV. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits

    Molecular and Histological Profiling Reveals an Innate-Shaped Immune Microenvironment in Solitary Juvenile Polyps.

    Get PDF
    INTRODUCTION Solitary juvenile polyps (JP) are characterized by a benign disease course with low recurrence rate but present with signs of intestinal inflammation. To better understand the underlying pathogenesis, we performed histological and molecular evaluation targeting distinct immune mechanisms. METHODS Pediatric patients with JP (n = 12), with treatment-naïve inflammatory bowel disease (IBD; [n = 41]) as inflammatory control, and non-IBD controls (n = 14) were investigated. For a comparative analysis of infiltrating immune cells, a next-generation tissue microarray of biopsies was assembled, immunostained, and scored. Targeted transcriptional profiling was performed using a customized immunology panel. RESULTS In JP, a predominant accumulation of neutrophils and eosinophils was observed. RNA expression profiles revealed increased levels of CXCL8, CXCL5, and CCL11 transcripts in JP, indicating an enhanced recruitment of neutrophils and eosinophils. Moreover, messenger RNA levels of the proinflammatory cytokine IL1b and the inflammation-amplifying receptor TREM1 were higher in JP, whereas we could not find signs of a functionally polarized Tcell response in JP when compared with IBD. DISCUSSION Patients with JP and patients with treatment-naïve IBD have distinct cell infiltrates during active disease. The ample presence of eosinophils in JP supports neutrophil accumulation, which is responsible for the elevated release of calprotectin. Intriguingly, however, we were not able to identify a functionally polarized T-cell response in JP, which indicates that during the acute onset of inflammation in JP, a potent adaptive immune memory is not established. This may explain the low reoccurrence rate of JP

    Mechanical testing and comparison of porcine tissue, silicones and 3D-printed materials for cardiovascular phantoms

    Get PDF
    Background: Cardiovascular phantoms for patient education, pre-operative planning, surgical training, haemodynamic simulation, and device testing may help improve patient care. However, currently used materials may have different mechanical properties compared to biological tissue. Methods/Aim: The aim of this study was to investigate the mechanical properties of 3D-printing and silicone materials in comparison to biological cardiovascular tissues. Uniaxial cyclic tension testing was performed using dumbbell samples from porcine tissue (aorta, pulmonary artery, right and left ventricle). Flexible testing materials included 15 silicone (mixtures) and three 3D-printing materials. The modulus of elasticity was calculated for different deformation ranges. Results: The modulus of elasticity (0%–60%) for the aorta ranged from 0.16 to 0.18 N/mm^2, for the pulmonary artery from 0.07 to 0.09 N/mm^2, and for the right ventricle as well as the left ventricle short-axis from 0.1 to 0.16 N/mm^2. For silicones the range of modulus of elasticity was 0.02–1.16 N/mm^2, and for the 3D-printed materials from 0.85 to 1.02 N/mm^2. The stress-strain curves of all tissues showed a non-linear behaviour in the cyclic tensile testing, with a distinct toe region, followed by exponential strain hardening behaviour towards the peak elongation. The vessel samples showed a more linear behaviour comparted to myocardial samples. The silicones and 3D printing materials exhibited near-linearity at higher strain ranges, with a decrease in stiffness following the initial deformation. All samples showed a deviation between the loading and unloading curves (hysteresis), and a reduction in peak force over the first few cycles (adaptation effect) at constant deformation. Conclusion: The modulus of elasticity of silicone mixtures is more in agreement to porcine cardiovascular tissues than 3D-printed materials. All synthetic materials showed an almost linear behaviour in the mechanical testing compared to the non-linear behaviour of the biological tissues, probably due to fibre recruitment mechanism in the latter

    Mechanical testing and comparison of porcine tissue, silicones and 3D-printed materials for cardiovascular phantoms

    Get PDF
    Background: Cardiovascular phantoms for patient education, pre-operative planning, surgical training, haemodynamic simulation, and device testing may help improve patient care. However, currently used materials may have different mechanical properties compared to biological tissue.Methods/Aim: The aim of this study was to investigate the mechanical properties of 3D-printing and silicone materials in comparison to biological cardiovascular tissues. Uniaxial cyclic tension testing was performed using dumbbell samples from porcine tissue (aorta, pulmonary artery, right and left ventricle). Flexible testing materials included 15 silicone (mixtures) and three 3D-printing materials. The modulus of elasticity was calculated for different deformation ranges.Results: The modulus of elasticity (0%–60%) for the aorta ranged from 0.16 to 0.18 N/mm2, for the pulmonary artery from 0.07 to 0.09 N/mm2, and for the right ventricle as well as the left ventricle short-axis from 0.1 to 0.16 N/mm2. For silicones the range of modulus of elasticity was 0.02–1.16 N/mm2, and for the 3D-printed materials from 0.85 to 1.02 N/mm2. The stress-strain curves of all tissues showed a non-linear behaviour in the cyclic tensile testing, with a distinct toe region, followed by exponential strain hardening behaviour towards the peak elongation. The vessel samples showed a more linear behaviour comparted to myocardial samples. The silicones and 3D printing materials exhibited near-linearity at higher strain ranges, with a decrease in stiffness following the initial deformation. All samples showed a deviation between the loading and unloading curves (hysteresis), and a reduction in peak force over the first few cycles (adaptation effect) at constant deformation.Conclusion: The modulus of elasticity of silicone mixtures is more in agreement to porcine cardiovascular tissues than 3D-printed materials. All synthetic materials showed an almost linear behaviour in the mechanical testing compared to the non-linear behaviour of the biological tissues, probably due to fibre recruitment mechanism in the latter

    Cloud observations in Switzerland using hemispherical sky cameras

    Get PDF
    We present observations of total cloud cover and cloud type classification results from a sky camera network comprising four stations in Switzerland. In a comprehensive intercomparison study, records of total cloud cover from the sky camera, long-wave radiation observations, Meteosat, ceilometer, and visual observations were compared. Total cloud cover from the sky camera was in 65–85% of cases within ±1 okta with respect to the other methods. The sky camera overestimates cloudiness with respect to the other automatic techniques on average by up to 1.1 ± 2.8 oktas but underestimates it by 0.8 ± 1.9 oktas compared to the human observer. However, the bias depends on the cloudiness and therefore needs to be considered when records from various observational techniques are being homogenized. Cloud type classification was conducted using the k-Nearest Neighbor classifier in combination with a set of color and textural features. In addition, a radiative feature was introduced which improved the discrimination by up to 10%. The performance of the algorithm mainly depends on the atmospheric conditions, site-specific characteristics, the randomness of the selected images, and possible visual misclassifications: The mean success rate was 80–90% when the image only contained a single cloud class but dropped to 50–70% if the test images were completely randomly selected and multiple cloud classes occurred in the images

    Regulator of G-protein signaling 1 critically supports CD8+ TRM cell-mediated intestinal immunity.

    Get PDF
    Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member Rgs1 is one of the most up-regulated genes in tissue-resident memory (TRM) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking. The impact of Rgs1 expression on tissue-resident T cell generation, their maintenance, and the immunosurveillance of barrier tissues, however, is only incompletely understood. Here we report that Rgs1 expression is readily induced in naïve OT-I T cells in vivo following intestinal infection with Listeria monocytogenes-OVA. In bone marrow chimeras, Rgs1 -/- and Rgs1 +/+ T cells were generally present in comparable frequencies in distinct T cell subsets of the intestinal mucosa, mesenteric lymph nodes, and spleen. After intestinal infection with Listeria monocytogenes-OVA, however, OT-I Rgs1 +/+ T cells outnumbered the co-transferred OT-I Rgs1- /- T cells in the small intestinal mucosa already early after infection. The underrepresentation of the OT-I Rgs1 -/- T cells persisted to become even more pronounced during the memory phase (d30 post-infection). Remarkably, upon intestinal reinfection, mice with intestinal OT-I Rgs1 +/+ TRM cells were able to prevent the systemic dissemination of the pathogen more efficiently than those with OT-I Rgs1 -/- TRM cells. While the underlying mechanisms are not fully elucidated yet, these data thus identify Rgs1 as a critical regulator for the generation and maintenance of tissue-resident CD8+ T cells as a prerequisite for efficient local immunosurveillance in barrier tissues in case of reinfections with potential pathogens
    corecore