1,474 research outputs found
Unconditional Pointer States from Conditional Master Equations
When part of the environment responsible for decoherence is used to extract
information about the decohering system, the preferred {\it pointer states}
remain unchanged. This conclusion -- reached for a specific class of models --
is investigated in a general setting of conditional master equations using
suitable generalizations of predictability sieve. We also find indications that
the einselected states are easiest to infer from the measurements carried out
on the environment.Comment: 4 pages, 3 .eps figures; final version to appear in Phys.Rev.Let
Dust in the Mars atmosphere
The amount of dust suspended in the Martian atmosphere is highly variable with location and with time. The opacity of the sky is best known at the two Viking Lander sites, where visual, vertical-column optical depth never fell below a value of a few tenths during the 1.25 Mars years of observations and yet exceeded 2 to 3 during two great dust storms in 1977. Elsewhere on the planet, optical depths have been estimated from orbiter visible imaging of surface contrasts and from mapping of infrared emission from the surface and the overlying (dusty) atmosphere. In many cases these opacities (and thus dust amounts) may be uncertain by as much as a factor of two. Viking Lander observations of twilight indicate that the background dust haze is more or less uniformly mixed with altitude in the lower atmosphere. Observations from spacecraft indicate that there may be come seasonal variations to the height of these dust hazes, which sometimes extend above 30 km. (Ice haze layers may occur as high as 80 km.) The existing observations do not constrain the composition or the size distribution of the suspended dust particles very well. Remote sensing observations depend principally upon the product of the number of particles, the geometric cross-sections (and so particle size and shape), and the extinction efficiency of the particles (and so the particle composition), as integrated over the particle size distribution and along the line of sight. While the observed variation of dust opacity with wavelength constrains these quantities, it does not often permit the unique determination of the individual properties of the suspended dust. A size distribution having a cross-section weighted mean particle radius of 2.5 microns was deduced from a synthesis of the IR thermal emission spectra observed in the Southern Hemisphere by Mariner 9 during the 1971 global dust storm. Although the IR thermal emission is relatively insensitive to the sub-micron sized particles which tend to dominate visible opacity, this same size distribution was consistent with modeling of the sky brightness variation near the sun, as seen through the background haze above the Viking lander sites in the Northern Hemisphere
Multiple Particle Interference and Quantum Error Correction
The concept of multiple particle interference is discussed, using insights
provided by the classical theory of error correcting codes. This leads to a
discussion of error correction in a quantum communication channel or a quantum
computer. Methods of error correction in the quantum regime are presented, and
their limitations assessed. A quantum channel can recover from arbitrary
decoherence of x qubits if K bits of quantum information are encoded using n
quantum bits, where K/n can be greater than 1-2 H(2x/n), but must be less than
1 - 2 H(x/n). This implies exponential reduction of decoherence with only a
polynomial increase in the computing resources required. Therefore quantum
computation can be made free of errors in the presence of physically realistic
levels of decoherence. The methods also allow isolation of quantum
communication from noise and evesdropping (quantum privacy amplification).Comment: Submitted to Proc. Roy. Soc. Lond. A. in November 1995, accepted May
1996. 39 pages, 6 figures. This is now the final version. The changes are
some added references, changed final figure, and a more precise use of the
word `decoherence'. I would like to propose the word `defection' for a
general unknown error of a single qubit (rotation and/or entanglement). It is
useful because it captures the nature of the error process, and has a verb
form `to defect'. Random unitary changes (rotations) of a qubit are caused by
defects in the quantum computer; to entangle randomly with the environment is
to form a treacherous alliance with an enemy of successful quantu
Environment--Induced Decoherence, Classicality and Consistency of Quantum Histories
We prove that for an open system, in the Markovian regime, it is always
possible to construct an infinite number of non trivial sets of histories that
exactly satisfy the probability sum rules. In spite of being perfectly
consistent, these sets manifest a very non--classical behavior: they are quite
unstable under the addition of an extra instant to the list of times defining
the history. To eliminate this feature --whose implications for the
interpretation of the formalism we discuss-- and to achieve the stability that
characterizes the quasiclassical domain, it is necessary to separate the
instants which define the history by time intervals significantly larger than
the typical decoherence time. In this case environment induced superselection
is very effective and the quasiclassical domain is characterized by histories
constructed with ``pointer projectors''.Comment: 32 pages (1 figure, postcript included at the end: use epsf.tex and
follow instructions before Texing) LA-UR-93-141
Decoherence, Chaos, and the Second Law
We investigate implications of decoherence for quantum systems which are
classically chaotic. We show that, in open systems, the rate of von Neumann
entropy production quickly reaches an asymptotic value which is: (i)
independent of the system-environment coupling, (ii) dictated by the dynamics
of the system, and (iii) dominated by the largest Lyapunov exponent. These
results shed a new light on the correspondence between quantum and classical
dynamics as well as on the origins of the ``arrow of time.''Comment: 13 Pages, 2 Figures available upon request, Preprint LA-UR-93-, The
new version contains the text, the previous one had only the Macros: sorry
Decoherence, Chaos, and the Correspondence Principle
We present evidence that decoherence can produce a smooth
quantum-to-classical transition in nonlinear dynamical systems. High-resolution
tracking of quantum and classical evolutions reveals differences in expectation
values of corresponding observables. Solutions of master equations demonstrate
that decoherence destroys quantum interference in Wigner distributions and
washes out fine structure in classical distributions bringing the two closer
together. Correspondence between quantum and classical expectation values is
also re-established.Comment: 4 pages, 2 figures (color figures embedded at low resolution), uses
RevTeX plus macro (included). Phys. Rev. Lett. (in press
- …