10,202 research outputs found
Ionizing radiation fluctuations and large-scale structure in the Lyman-alpha forest
We investigate the large-scale inhomogeneities of the hydrogen ionizing
radiation field in the Universe at redshift z=3. Using a raytracing algorithm,
we simulate a model in which quasars are the dominant sources of radiation. We
make use of large scale N-body simulations of a LambdaCDM universe, and include
such effects as finite quasar lifetimes and output on the lightcone, which
affects the shape of quasar light echoes. We create Lya forest spectra that
would be generated in the presence of such a fluctuating radiation field,
finding that the power spectrum of the Lya forest can be suppressed by as much
as 15 % for modes with k=0.05-1 Mpc/h. This relatively small effect may have
consequences for high precision measurements of the Lya power spectrum on
larger scales than have yet been published. We also investigate another
radiation field probe, the cross-correlation of quasar positions and the Lya
forest. For both quasar lifetimes which we simulate (10^7 yr and 10^8 yr), we
expect to see a strong decrease in the Lya absorption close to other quasars
(the ``foreground'' proximity effect). We then use data from the Sloan Digital
Sky Survey First Data Release to make an observational determination of this
statistic. We find no sign of our predicted lack of absorption, but instead
increased absorption close to quasars. If the bursts of radiation from quasars
last on average < 10^6 yr, then we would not expect to be able to see the
foreground effect. However, the strength of the absorption itself seems to be
indicative of rare objects, and hence much longer total times of emission per
quasar. Variability of quasars in bursts with timescales > 10^4yr and < 10^6 yr
could reconcile these two facts.Comment: Submitted to ApJ, 21 pages, 17 postscript figures, emulateapj.st
On the importance of local sources of radiation for quasar absorption line systems
A generic assumption of ionization models of quasar absorption systems is
that radiation from local sources is negligible compared with the cosmological
background. We test this assumption and find that it is unlikely to hold for
absorbers as rare as H I Lyman limit systems. Assuming that the absorption
systems are gas clouds centered on sources of radiation, we derive analytic
estimates for the cross-section weighted moments of the flux seen by the
absorbers, of the impact parameter, and of the luminosity of the central
source. In addition, we compute the corresponding medians numerically. For the
one class of absorbers for which the flux has been measured: damped Ly-alpha
systems at z~3, our prediction is in excellent agreement with the observations
if we assume that the absorption arises in clouds centered on Lyman-break
galaxies. Finally, we show that if Lyman-break galaxies dominate the UV
background at redshift 3, then consistency between observations of the UV
background, the UV luminosity density from galaxies, and the number density of
Lyman limit systems requires escape fractions of order 10 percent.Comment: Accepted for publication in the Astrophysical Journal, 11 pages, 1
figure. Version 2: Added alternative method. Decreased fiducial escape
fraction to guarantee consistency between observed luminosity density, mean
free path, and UV background. This increased the column density above which
local radiation is importan
Su(3) Algebraic Structure of the Cuprate Superconductors Model based on the Analogy with Atomic Nuclei
A cuprate superconductor model based on the analogy with atomic nuclei was
shown by Iachello to have an structure. The mean-field approximation
Hamiltonian can be written as a linear function of the generators of
algebra. Using algebraic method, we derive the eigenvalues of the reduced
Hamiltonian beyond the subalgebras and of
algebra. In particular, by considering the coherence between s- and d-wave
pairs as perturbation, the effects of coherent term upon the energy spectrum
are investigated
Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces
©2003 The American Physical Society. The electronic version of this article is the complete one and can be found online at: http://link.aps.org/doi/10.1103/PhysRevLett.91.185502DOI: 10.1103/PhysRevLett.91.185502We report that the Zn-terminated ZnO (0001) polar surface is chemically active and the oxygenterminated (0001) polar surface is inert in the growth of nanocantilever arrays. Longer and wider "comblike" nanocantilever arrays are grown from the (0001)-Zn surface, which is suggested to be a self-catalyzed process due to the enrichment of Zn at the growth front. The chemically inactive
(0001)-O surface typically does not initiate any growth, but controlling experimental conditions could lead to the growth of shorter and narrower nanocantilevers from the intersections between (0001)-O with (0110) surfaces
Correlation effects in the ground state charge density of Mott-insulating NiO: a comparison of ab-initio calculations and high-energy electron diffraction measurements
Accurate high-energy electron diffraction measurements of structure factors
of NiO have been carried out to investigate how strong correlations in the Ni
3d shell affect electron charge density in the interior area of nickel ions and
whether the new ab-initio approaches to the electronic structure of strongly
correlated metal oxides are in accord with experimental observations. The
generalized gradient approximation (GGA) and the local spin density
approximation corrected by the Hubbard U term (LSDA+U) are found to provide the
closest match to experimental measurements. The comparison of calculated and
observed electron charge densities shows that correlations in the Ni 3d shell
suppress covalent bonding between the oxygen and nickel sublattices.Comment: 6 pages, LaTeX and 5 figures in the postscript forma
Detecting the Earliest Galaxies Through Two New Sources of 21cm Fluctuations
The first galaxies that formed at a redshift ~20-30 emitted continuum photons
with energies between the Lyman-alpha and Lyman limit wavelengths of hydrogen,
to which the neutral universe was transparent except at the Lyman-series
resonances. As these photons redshifted or scattered into the Lyman-alpha
resonance they coupled the spin temperature of the 21cm transition of hydrogen
to the gas temperature, allowing it to deviate from the microwave background
temperature. We show that the fluctuations in the radiation emitted by the
first galaxies produced strong fluctuations in the 21cm flux before the
Lyman-alpha coupling became saturated. The fluctuations were caused by biased
inhomogeneities in the density of galaxies, along with Poisson fluctuations in
the number of galaxies. Observing the power-spectra of these two sources would
probe the number density of the earliest galaxies and the typical mass of their
host dark matter halos. The enhanced amplitude of the 21cm fluctuations from
the era of Lyman-alpha coupling improves considerably the practical prospects
for their detection.Comment: 11 pages, 7 figures, ApJ, published. Normalization fixed in top
panels of Figures 4-
- …