10,202 research outputs found

    Ionizing radiation fluctuations and large-scale structure in the Lyman-alpha forest

    Full text link
    We investigate the large-scale inhomogeneities of the hydrogen ionizing radiation field in the Universe at redshift z=3. Using a raytracing algorithm, we simulate a model in which quasars are the dominant sources of radiation. We make use of large scale N-body simulations of a LambdaCDM universe, and include such effects as finite quasar lifetimes and output on the lightcone, which affects the shape of quasar light echoes. We create Lya forest spectra that would be generated in the presence of such a fluctuating radiation field, finding that the power spectrum of the Lya forest can be suppressed by as much as 15 % for modes with k=0.05-1 Mpc/h. This relatively small effect may have consequences for high precision measurements of the Lya power spectrum on larger scales than have yet been published. We also investigate another radiation field probe, the cross-correlation of quasar positions and the Lya forest. For both quasar lifetimes which we simulate (10^7 yr and 10^8 yr), we expect to see a strong decrease in the Lya absorption close to other quasars (the ``foreground'' proximity effect). We then use data from the Sloan Digital Sky Survey First Data Release to make an observational determination of this statistic. We find no sign of our predicted lack of absorption, but instead increased absorption close to quasars. If the bursts of radiation from quasars last on average < 10^6 yr, then we would not expect to be able to see the foreground effect. However, the strength of the absorption itself seems to be indicative of rare objects, and hence much longer total times of emission per quasar. Variability of quasars in bursts with timescales > 10^4yr and < 10^6 yr could reconcile these two facts.Comment: Submitted to ApJ, 21 pages, 17 postscript figures, emulateapj.st

    On the importance of local sources of radiation for quasar absorption line systems

    Full text link
    A generic assumption of ionization models of quasar absorption systems is that radiation from local sources is negligible compared with the cosmological background. We test this assumption and find that it is unlikely to hold for absorbers as rare as H I Lyman limit systems. Assuming that the absorption systems are gas clouds centered on sources of radiation, we derive analytic estimates for the cross-section weighted moments of the flux seen by the absorbers, of the impact parameter, and of the luminosity of the central source. In addition, we compute the corresponding medians numerically. For the one class of absorbers for which the flux has been measured: damped Ly-alpha systems at z~3, our prediction is in excellent agreement with the observations if we assume that the absorption arises in clouds centered on Lyman-break galaxies. Finally, we show that if Lyman-break galaxies dominate the UV background at redshift 3, then consistency between observations of the UV background, the UV luminosity density from galaxies, and the number density of Lyman limit systems requires escape fractions of order 10 percent.Comment: Accepted for publication in the Astrophysical Journal, 11 pages, 1 figure. Version 2: Added alternative method. Decreased fiducial escape fraction to guarantee consistency between observed luminosity density, mean free path, and UV background. This increased the column density above which local radiation is importan

    Su(3) Algebraic Structure of the Cuprate Superconductors Model based on the Analogy with Atomic Nuclei

    Full text link
    A cuprate superconductor model based on the analogy with atomic nuclei was shown by Iachello to have an su(3)su(3) structure. The mean-field approximation Hamiltonian can be written as a linear function of the generators of su(3)su(3) algebra. Using algebraic method, we derive the eigenvalues of the reduced Hamiltonian beyond the subalgebras u(1)u(2)u(1)\bigotimes u(2) and so(3)so(3) of su(3)su(3) algebra. In particular, by considering the coherence between s- and d-wave pairs as perturbation, the effects of coherent term upon the energy spectrum are investigated

    Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces

    Get PDF
    ©2003 The American Physical Society. The electronic version of this article is the complete one and can be found online at: http://link.aps.org/doi/10.1103/PhysRevLett.91.185502DOI: 10.1103/PhysRevLett.91.185502We report that the Zn-terminated ZnO (0001) polar surface is chemically active and the oxygenterminated (0001) polar surface is inert in the growth of nanocantilever arrays. Longer and wider "comblike" nanocantilever arrays are grown from the (0001)-Zn surface, which is suggested to be a self-catalyzed process due to the enrichment of Zn at the growth front. The chemically inactive (0001)-O surface typically does not initiate any growth, but controlling experimental conditions could lead to the growth of shorter and narrower nanocantilevers from the intersections between (0001)-O with (0110) surfaces

    Correlation effects in the ground state charge density of Mott-insulating NiO: a comparison of ab-initio calculations and high-energy electron diffraction measurements

    Full text link
    Accurate high-energy electron diffraction measurements of structure factors of NiO have been carried out to investigate how strong correlations in the Ni 3d shell affect electron charge density in the interior area of nickel ions and whether the new ab-initio approaches to the electronic structure of strongly correlated metal oxides are in accord with experimental observations. The generalized gradient approximation (GGA) and the local spin density approximation corrected by the Hubbard U term (LSDA+U) are found to provide the closest match to experimental measurements. The comparison of calculated and observed electron charge densities shows that correlations in the Ni 3d shell suppress covalent bonding between the oxygen and nickel sublattices.Comment: 6 pages, LaTeX and 5 figures in the postscript forma

    Detecting the Earliest Galaxies Through Two New Sources of 21cm Fluctuations

    Full text link
    The first galaxies that formed at a redshift ~20-30 emitted continuum photons with energies between the Lyman-alpha and Lyman limit wavelengths of hydrogen, to which the neutral universe was transparent except at the Lyman-series resonances. As these photons redshifted or scattered into the Lyman-alpha resonance they coupled the spin temperature of the 21cm transition of hydrogen to the gas temperature, allowing it to deviate from the microwave background temperature. We show that the fluctuations in the radiation emitted by the first galaxies produced strong fluctuations in the 21cm flux before the Lyman-alpha coupling became saturated. The fluctuations were caused by biased inhomogeneities in the density of galaxies, along with Poisson fluctuations in the number of galaxies. Observing the power-spectra of these two sources would probe the number density of the earliest galaxies and the typical mass of their host dark matter halos. The enhanced amplitude of the 21cm fluctuations from the era of Lyman-alpha coupling improves considerably the practical prospects for their detection.Comment: 11 pages, 7 figures, ApJ, published. Normalization fixed in top panels of Figures 4-
    corecore