1,051 research outputs found

    Gravitational waves in general relativity: XIV. Bondi expansions and the ``polyhomogeneity'' of \Scri

    Get PDF
    The structure of polyhomogeneous space-times (i.e., space-times with metrics which admit an expansion in terms of rjlogirr^{-j}\log^i r) constructed by a Bondi--Sachs type method is analysed. The occurrence of some log terms in an asymptotic expansion of the metric is related to the non--vanishing of the Weyl tensor at Scri. Various quantities of interest, including the Bondi mass loss formula, the peeling--off of the Riemann tensor and the Newman--Penrose constants of motion are re-examined in this context.Comment: LaTeX, 28pp, CMA-MR14-9

    On the existence of Killing vector fields

    Get PDF
    In covariant metric theories of coupled gravity-matter systems the necessary and sufficient conditions ensuring the existence of a Killing vector field are investigated. It is shown that the symmetries of initial data sets are preserved by the evolution of hyperbolic systems.Comment: 9 pages, no figure, to appear in Class. Quant. Gra

    Local and Global Analytic Solutions for a Class of Characteristic Problems of the Einstein Vacuum Equations in the "Double Null Foliation Gauge"

    Full text link
    The main goal of this work consists in showing that the analytic solutions for a class of characteristic problems for the Einstein vacuum equations have an existence region larger than the one provided by the Cauchy-Kowalevski theorem due to the intrinsic hyperbolicity of the Einstein equations. To prove this result we first describe a geometric way of writing the vacuum Einstein equations for the characteristic problems we are considering, in a gauge characterized by the introduction of a double null cone foliation of the spacetime. Then we prove that the existence region for the analytic solutions can be extended to a larger region which depends only on the validity of the apriori estimates for the Weyl equations, associated to the "Bel-Robinson norms". In particular if the initial data are sufficiently small we show that the analytic solution is global. Before showing how to extend the existence region we describe the same result in the case of the Burger equation, which, even if much simpler, nevertheless requires analogous logical steps required for the general proof. Due to length of this work, in this paper we mainly concentrate on the definition of the gauge we use and on writing in a "geometric" way the Einstein equations, then we show how the Cauchy-Kowalevski theorem is adapted to the characteristic problem for the Einstein equations and we describe how the existence region can be extended in the case of the Burger equation. Finally we describe the structure of the extension proof in the case of the Einstein equations. The technical parts of this last result is the content of a second paper.Comment: 68 page

    Uniqueness properties of the Kerr metric

    Get PDF
    We obtain a geometrical condition on vacuum, stationary, asymptotically flat spacetimes which is necessary and sufficient for the spacetime to be locally isometric to Kerr. Namely, we prove a theorem stating that an asymptotically flat, stationary, vacuum spacetime such that the so-called Killing form is an eigenvector of the self-dual Weyl tensor must be locally isometric to Kerr. Asymptotic flatness is a fundamental hypothesis of the theorem, as we demonstrate by writing down the family of metrics obtained when this requirement is dropped. This result indicates why the Kerr metric plays such an important role in general relativity. It may also be of interest in order to extend the uniqueness theorems of black holes to the non-connected and to the non-analytic case.Comment: 30 pages, LaTeX, submitted to Classical and Quantum Gravit

    Dynamical extensions for shell-crossing singularities

    Full text link
    We derive global weak solutions of Einstein's equations for spherically symmetric dust-filled space-times which admit shell-crossing singularities. In the marginally bound case, the solutions are weak solutions of a conservation law. In the non-marginally bound case, the equations are solved in a generalized sense involving metric functions of bounded variation. The solutions are not unique to the future of the shell-crossing singularity, which is replaced by a shock wave in the present treatment; the metric is bounded but not continuous.Comment: 14 pages, 1 figur

    The Ernst equation and ergosurfaces

    Full text link
    We show that analytic solutions \mcE of the Ernst equation with non-empty zero-level-set of \Re \mcE lead to smooth ergosurfaces in space-time. In fact, the space-time metric is smooth near a "Ernst ergosurface" EfE_f if and only if \mcE is smooth near EfE_f and does not have zeros of infinite order there.Comment: 23 pages, 4 figures; misprints correcte

    A spacetime characterization of the Kerr metric

    Full text link
    We obtain a characterization of the Kerr metric among stationary, asymptotically flat, vacuum spacetimes, which extends the characterization in terms of the Simon tensor (defined only in the manifold of trajectories) to the whole spacetime. More precisely, we define a three index tensor on any spacetime with a Killing field, which vanishes identically for Kerr and which coincides in the strictly stationary region with the Simon tensor when projected down into the manifold of trajectories. We prove that a stationary asymptotically flat vacuum spacetime with vanishing spacetime Simon tensor is locally isometric to Kerr. A geometrical interpretation of this characterization in terms of the Weyl tensor is also given. Namely, a stationary, asymptotically flat vacuum spacetime such that each principal null direction of the Killing form is a repeated principal null direction of the Weyl tensor is locally isometric to Kerr.Comment: 23 pages, No figures, LaTeX, to appear in Classical and Quantum Gravit
    corecore