101 research outputs found
Low-Density Arrays of Circulant Matrices: Rank and Row-Redundancy Analysis, and Quasi-Cyclic LDPC Codes
This paper is concerned with general analysis on the rank and row-redundancy
of an array of circulants whose null space defines a QC-LDPC code. Based on the
Fourier transform and the properties of conjugacy classes and Hadamard products
of matrices, we derive tight upper bounds on rank and row-redundancy for
general array of circulants, which make it possible to consider row-redundancy
in constructions of QC-LDPC codes to achieve better performance. We further
investigate the rank of two types of construction of QC-LDPC codes:
constructions based on Vandermonde Matrices and Latin Squares and give
combinatorial expression of the exact rank in some specific cases, which
demonstrates the tightness of the bound we derive. Moreover, several types of
new construction of QC-LDPC codes with large row-redundancy are presented and
analyzed.Comment: arXiv admin note: text overlap with arXiv:1004.118
Bridge the Gap Between VQA and Human Behavior on Omnidirectional Video: A Large-Scale Dataset and a Deep Learning Model
Omnidirectional video enables spherical stimuli with the viewing range. Meanwhile, only the viewport region of omnidirectional
video can be seen by the observer through head movement (HM), and an even
smaller region within the viewport can be clearly perceived through eye
movement (EM). Thus, the subjective quality of omnidirectional video may be
correlated with HM and EM of human behavior. To fill in the gap between
subjective quality and human behavior, this paper proposes a large-scale visual
quality assessment (VQA) dataset of omnidirectional video, called VQA-OV, which
collects 60 reference sequences and 540 impaired sequences. Our VQA-OV dataset
provides not only the subjective quality scores of sequences but also the HM
and EM data of subjects. By mining our dataset, we find that the subjective
quality of omnidirectional video is indeed related to HM and EM. Hence, we
develop a deep learning model, which embeds HM and EM, for objective VQA on
omnidirectional video. Experimental results show that our model significantly
improves the state-of-the-art performance of VQA on omnidirectional video.Comment: Accepted by ACM MM 201
Multi-Frame Quality Enhancement for Compressed Video
The past few years have witnessed great success in applying deep learning to
enhance the quality of compressed image/video. The existing approaches mainly
focus on enhancing the quality of a single frame, ignoring the similarity
between consecutive frames. In this paper, we investigate that heavy quality
fluctuation exists across compressed video frames, and thus low quality frames
can be enhanced using the neighboring high quality frames, seen as Multi-Frame
Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach
for compressed video, as a first attempt in this direction. In our approach, we
firstly develop a Support Vector Machine (SVM) based detector to locate Peak
Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame
Convolutional Neural Network (MF-CNN) is designed to enhance the quality of
compressed video, in which the non-PQF and its nearest two PQFs are as the
input. The MF-CNN compensates motion between the non-PQF and PQFs through the
Motion Compensation subnet (MC-subnet). Subsequently, the Quality Enhancement
subnet (QE-subnet) reduces compression artifacts of the non-PQF with the help
of its nearest PQFs. Finally, the experiments validate the effectiveness and
generality of our MFQE approach in advancing the state-of-the-art quality
enhancement of compressed video. The code of our MFQE approach is available at
https://github.com/ryangBUAA/MFQE.gitComment: to appear in CVPR 201
- …