266 research outputs found

    An olfactory subsystem that detects carbon disulfide and mediates food-related social learning

    Get PDF
    In mammals, pheromones and other social cues can promote mating or aggression behaviors; can communicate information about social hierarchies, genetic identity and health status; and can contribute to associative learning. However, the molecular, cellular, and neural mechanisms underlying many olfactory-mediated social interactions remain poorly understood. Here, we show a specialized olfactory subsystem that includes olfactory sensory neurons (OSNs) expressing the receptor guanylyl cyclase GC-D, the cyclic nucleotide-gated channel subunit CNGA3, and the carbonic anhydrase isoform CAII (GC-D(+) OSNs) is required for the acquisition of socially transmitted food preferences (STFPs) in mice

    Invasion success of a Lessepsian symbiont-bearing foraminifera linked to high dispersal ability, preadaptation and suppression of sexual reproduction

    Get PDF
    Among the most successful Lessepsian invaders is the symbiont-bearing benthic foraminifera Amphistegina lobifera. In its newly conquered habitat, this prolific calcifier and ecosystem engineer is exposed to environmental conditions that exceed the range of its native habitat. To disentangle which processes facilitated the invasion success of A. lobifera into the Mediterranean Sea we analyzed a ~ 1400 bp sequence fragment covering the SSU and ITS gene markers to compare the populations from its native regions and along the invasion gradient. The genetic variability was studied at four levels: intra-genomic, population, regional and geographical. We observed that the invasion is not associated with genetic differentiation, but the invasive populations show a distinct suppression of intra-genomic variability among the multiple copies of the rRNA gene. A reduced genetic diversity compared to the Indopacific is observed already in the Red Sea populations and their high dispersal potential into the Mediterranean appears consistent with a bridgehead effect resulting from the postglacial expansion from the Indian Ocean into the Red Sea. We conclude that the genetic structure of the invasive populations reflects two processes: high dispersal ability of the Red Sea source population pre-adapted to Mediterranean conditions and a likely suppression of sexual reproduction in the invader. This discovery provides a new perspective on the cost of invasion in marine protists: The success of the invasive A. lobifera in the Mediterranean Sea comes at the cost of abandonment of sexual reproduction

    A Recent Class of Chemosensory Neurons Developed in Mouse and Rat

    Get PDF
    In most animal species, the vomeronasal organ ensures the individual recognition of conspecifics, a prerequisite for a successful reproduction. The vomeronasal organ expresses several receptors for pheromone detection. Mouse vomeronasal type-2 receptors (V2Rs) are restricted to the basal neurons of this organ and organized in four families. Family-A, B and D (family ABD) V2Rs are expressed monogenically (one receptor per neuron) and coexpress with either Vmn2r1 or Vmn2r2, two members of family-C V2Rs. Thus, basal neurons are characterized by specific combinations of two V2Rs. To investigate this issue, we raised antibodies against all family-C V2Rs and analyzed their expression pattern. We found that six out of seven family-C V2Rs (Vmn2r2-7) largely coexpressed and that none of the anti-Vmn2r2-7 antibodies significantly stained Vmn2r1 positive neurons. Thus, basal neurons are divided into two complementary subsets. The first subset (Vmn2r1-positive) preferentially coexpresses a distinct group of family-ABD V2Rs, whereas the second subset (Vmn2r2-7-positive) coexpresses the remaining group of V2Rs. Phylogenetic reconstruction and the analysis of genetic loci in various species reveal that receptors expressed by this second neuronal subset are recent branches of the V2R tree exclusively present in mouse and rat. Conversely, V2Rs expressed in Vmn2r1 positive neurons, are phylogenetically ancient and found in most vertebrates including rodents. Noticeably, the more recent neuronal subset expresses a type of Major Histocompatibility Complex genes only found in murine species. These results indicate that the expansion of the V2R repertoire in a murine ancestor occurred with the establishment of a new population of vomeronasal neurons in which coexists the polygenic expression of a recent group of family-C V2Rs (Vmn2r2-7) and the monogenic expression of a recent group of family-ABD V2Rs. This evolutionary innovation could provide a molecular rationale for the exquisite ability in individual recognition and mate choice of murine species

    Radiation management and credentialing of fluoroscopy users

    Get PDF
    During the last 15 years, developments in X-ray technologies have substantially improved the ability of practitioners to treat patients using fluoroscopically guided interventional techniques. Many of these procedures require a greater use of fluoroscopy and more recording of images. This increases the potential for radiation-induced dermatitis and epilation, as well as severe radiation-induced burns to patients. Many fluoroscope operators are untrained in radiation management and do not realize that these procedures increase the risk of radiation injury and radiation-induced cancer in personnel as well as patients. The hands of long-time fluoroscope operators in some cases exhibit radiation damage—especially when sound radiation protection practices have not been followed. In response, the Center for Devices and Radiological Health of the United States Food and Drug Administration has issued an Advisory calling for proper training of operators. Hospitals and administrators need to support and enforce the need for this training by requiring documentation of credentials in radiation management as a prerequisite for obtaining fluoroscopy privileges. A concerted effort on the part of professional medical organizations and regulatory agencies will be required to train fluoroscopy users to prevent physicians from unwittingly imparting serious radiation injuries to their patients

    Molecular evolutionary characterization of a V1R subfamily unique to strepsirrhine primates.

    Get PDF
    Vomeronasal receptor genes have frequently been invoked as integral to the establishment and maintenance of species boundaries among mammals due to the elaborate one-to-one correspondence between semiochemical signals and neuronal sensory inputs. Here, we report the most extensive sample of vomeronasal receptor class 1 (V1R) sequences ever generated for a diverse yet phylogenetically coherent group of mammals, the tooth-combed primates (suborder Strepsirrhini). Phylogenetic analysis confirms our intensive sampling from a single V1R subfamily, apparently unique to the strepsirrhine primates. We designate this subfamily as V1Rstrep. The subfamily retains extensive repertoires of gene copies that descend from an ancestral gene duplication that appears to have occurred prior to the diversification of all lemuriform primates excluding the basal genus Daubentonia (the aye-aye). We refer to the descendent clades as V1Rstrep-α and V1Rstrep-β. Comparison of the two clades reveals different amino acid compositions corresponding to the predicted ligand-binding site and thus potentially to altered functional profiles between the two. In agreement with previous studies of the mouse lemur (genus, Microcebus), the majority of V1Rstrep gene copies appear to be intact and under strong positive selection, particularly within transmembrane regions. Finally, despite the surprisingly high number of gene copies identified in this study, it is nonetheless probable that V1R diversity remains underestimated in these nonmodel primates and that complete characterization will be limited until high-coverage assembled genomes are available

    Olfactory response termination involves Ca2+-ATPase in vertebrate olfactory receptor neuron cilia

    Get PDF
    In vertebrate olfactory receptor neurons (ORNs), odorant-induced activation of the transduction cascade culminates in production of cyclic AMP, which opens cyclic nucleotide–gated channels in the ciliary membrane enabling Ca2+ influx. The ensuing elevation of the intraciliary Ca2+ concentration opens Ca2+-activated Cl− channels, which mediate an excitatory Cl− efflux from the cilia. In order for the response to terminate, the Cl− channel must close, which requires that the intraciliary Ca2+ concentration return to basal levels. Hitherto, the extrusion of Ca2+ from the cilia has been thought to depend principally on a Na+–Ca2+ exchanger

    In vitro test of external Qigong

    Get PDF
    BACKGROUND: Practitioners of the alternative medical practice 'external Qigong' generally claim the ability to emit or direct "healing energy" to treat patients. We investigated the ability of experienced Qigong practitioners to enhance the healthy growth of cultured human cells in a series of studies, each following a rigorously designed protocol with randomization, blinding and controls for variability. METHODS: Qigong practitioners directed healing intentionality toward normal brain cell cultures in a basic science laboratory. Qigong treatments were delivered for 20 minutes from a minimum distance of 10 centimeters. Cell proliferation was measured by a standard colony-forming efficiency (CFE) assay and a CFE ratio (CFE for treated samples/CFE for sham samples) was the dependent measure for each experiment. RESULTS: During a pilot study (8 experiments), a trend of increased cell proliferation in Qigong-treated samples (CFE Qigong/sham ratios > 1.0) was observed (P = 0.162). In a formal study (28 experiments), a similar trend was observed, with Qigong-treated samples showing on average more colony formation than sham samples (P = 0.036). In a replication study (60 experiments), no significant difference between Qigong-treated samples and sham samples was observed (P = 0.465). CONCLUSION: We observed an apparent increase in the proliferation of cultured cells following external Qigong treatment by practitioners under strictly controlled conditions, but we did not observe this effect in a replication study. These results suggest the need for more controlled and thorough investigation of external Qigong before scientific validation is claimed

    Heritability of Attractiveness to Mosquitoes

    Get PDF
    Female mosquitoes display preferences for certain individuals over others, which is determined by differences in volatile chemicals produced by the human body and detected by mosquitoes. Body odour can be controlled genetically but the existence of a genetic basis for differential attraction to insects has never been formally demonstrated. This study investigated heritability of attractiveness to mosquitoes by evaluating the response of Aedes aegypti (=Stegomyia aegypti) mosquitoes to odours from the hands of identical and non-identical twins in a dual-choice assay. Volatiles from individuals in an identical twin pair showed a high correlation in attractiveness to mosquitoes, while non-identical twin pairs showed a significantly lower correlation. Overall, there was a strong narrow-sense heritability of 0.62 (SE 0.124) for relative attraction and 0.67 (0.354) for flight activity based on the average of ten measurements. The results demonstrate an underlying genetic component detectable by mosquitoes through olfaction. Understanding the genetic basis for attractiveness could create a more informed approach to repellent development

    Analysis of the vomeronasal organ transcriptome reveals variable gene expression depending on age and function in rabbits

    Get PDF
    The vomeronasal organ (VNO) is a chemosensory organ specialized in pheromone detection that shows a broad morphofunctional and genomic diversity among mammals. However, its expression patterns have only been well-characterized in mice. Here, we provide the first comprehensive RNA sequencing study of the rabbit VNO across gender and sexual maturation stages. We characterized the VNO transcriptome, updating the number and expression of the two main vomeronasal receptor families, including 128 V1Rs and 67 V2Rs. Further, we defined the expression of formyl-peptide receptor and transient receptor potential channel families, both known to have specific roles in the VNO. Several sex hormone-related pathways were consistently enriched in the VNO, highlighting the relevance of this organ in reproduction. Moreover, whereas juvenile and adult VNOs showed significant transcriptome differences, male and female did not. Overall, these results contribute to understand the genomic basis of behavioural responses mediated by the VNO in a non-rodent modelS

    On the Immortality of Television Sets: "Function" in the Human Genome According to the Evolution-Free Gospel of ENCODE

    Get PDF
    A recent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%. Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies that at least 80 − 10 = 70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever occur in these “functional” regions or because no mutation in these regions can ever be deleterious. This absurd conclusion was reached through various means, chiefly by employing the seldom used “causal role” definition of biological function and then applying it inconsistently to different biochemical properties, by committing a logical fallacy known as “affirming the consequent,” by failing to appreciate the crucial difference between “junk DNA” and “garbage DNA,” by using analytical methods that yield biased errors and inflate estimates of functionality, by favoring statistical sensitivity over specificity, and by emphasizing statistical significance rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to necessitate the rewriting of textbooks. We agree, many textbooks dealing with marketing, mass-media hype, and public relations may well have to be rewritten
    corecore