292 research outputs found

    Real and perceived physical functioning in Italian elderly population: associations with BADL and IADL

    Get PDF
    This study aimed to identify the key physical abilities (aerobic endurance, gait speed, balance, strength) and psychological variables associated with the level of basic (BADL) and instrumental (IADL) activities of daily living in an autonomous community-dwelling elderly population in Italy. 135 elderly people (63% women; mean age = 73.3, SD = 5.5) were included in the study. Stepwise regression was performed to verify the association between these variables and the level of BADL and IADL in the elderly participants. Results showed that balance (β = −0.21, p < 0.01) and perception of physical functioning (β = 0.32, p < 0.0001) were the key individual variables related to BADL scores, and IADL score was associated with perception of physical functioning (β = 0.30, p < 0.0001) and upper limb strength (β = 0.21, p < 0.05). The results demonstrate a relationship between physical functioning and ADL, both real physical functioning and perceived physical functioning

    Shock induction by arterial hypoperfusion of the gut involves synergistic interactions between the peripheral enkephalin and nitric oxide systems.

    Get PDF
    To determine whether critical splanchnic artery hypoperfusion can provoke systemic shock and to identify the roles of the peripheral opioid and nitric oxide (NO) systems in this process, various degrees of superior mesenteric artery hypoperfusion (SMA-H) were produced in anesthetized adult rabbits (n=40), and hemodynamic and metabolic indices were measured. Metabolic acidosis and irreversible hypodynamic shock occurred with SMA-H at levels representing 25–20% of mean baseline SMA blood flow. In 112 other rabbits subjected to SMA-H at 20% (SMA-H20%), we studied plasma NO and enkephalin (ENK) levels, cardiovascular reactivity to selected physiological agonists, effects of ENKs on plasma NO levels, and effects of peripheral opioid receptor blockade and inducible NO synthase (iNOS) inhibition. SMA-H20% progressively increased systemic blood levels of NO and ENKs. Exogenous ENK administration accentuated SMA-H20%-induced increases in plasma NO levels, and their cardiovascular depressing effects were significantly greater when they were administered during SMA-H20% (vs. administration under baseline conditions). Selective blockade of cardiovascular δ-opioid receptors improved hemodynamics, prevented shock irreversibility and reduced plasma NO levels; similar effects were obtained by selective iNOS inhibition. These findings demonstrate that critical arterial hypoperfusion of the gut can induce hypodynamic systemic shock through ENK-induced hyperactivation of cardiovascular δ-opioid receptors, which leads to increased plasma levels of NO related in part to increased iNOS activity. Since pronounced splanchnic artery hypoperfusion occurs in all advanced systemic shock states, selective δ-opioid receptor antagonists and/or iNOS inhibitors may prove to be useful in improving shock hemodynamics and metabolic derangements and/or preventing progression toward irreversibility

    A Left Atrial Appendage Closure Combined Procedure Review: past, present and future perspectives

    Get PDF
    Atrial fibrillation (AF) represents the most common cardiac arrhythmia worldwide; it poses a great burden in terms of quality of life reduction and yearly stroke risk. Left atrial appendage closure (LAAC) is a stroke prevention strategy that has been proven a viable alternative to anti-thrombotic regimens in non-valvular AF patients. LAAC can be performed as a stand-alone procedure or alongside a concomitant AF trans catheter ablation, in a procedure known as "Combined Procedure". Aim of this study is to summarize the scientific evidence backing this combined strategy

    Experiments on the MHD Effect on the Drainage of a LiPb Channel and Supporting Numerical Computations with the Level Set Method

    Get PDF
    To analyze the impact of the magnetohydrodynamics (MHD) effect on the fast draining of a LiPb channel (lithium-lead eutectic, 15.7 at. % Li) for a liquid metal fusion blanket such as the water-cooled lithium-lead test blanket system of ITER or DEMO, an experimental campaign was carried out with the support of the Integrated European Lead Lithium LOop experimental facility (IELLLO), installed at the ENEA Brasimone research center, Italy. The experiments were carried out by measuring the drainage time of the internal permanent magnet pump channel, normally used to circulate the LiPb in the loop, with and without the magnetic field. Moreover, this paper proposes a new numerical methodology to study the time delay induced by the MHD by using the commercial software COMSOL Multiphysics. In this way, it was possible to evaluate the LiPb fraction present at each time step in the computational domain and to estimate the time necessary for the complete drainage of the channel. The level set method was used to describe the transient behavior of the MHD flow under low-Rm approximation. The developed code was compared with the experimental results and showed good agreement, and it constitutes the first step in model validation as a possible application to ITER and DEMO. The experimental and numerical analyses performed in this work can be used as a benchmark case for MHD code development

    Probing the in-plane electron spin polarization in Ge/Si0.15 Ge0.85 multiple quantum wells

    Get PDF
    We investigate spin transport in a set of Ge/Si0.15Ge0.85 multiple quantum wells (MQWs) as a function of the well thickness. We exploit optical orientation to photogenerate spin-polarized electrons in the discrete energy levels of the well conduction band at the Γ point of the Brillouin zone. After diffusion, we detect the optically oriented spins by means of the inverse spin-Hall effect (ISHE) taking place in a thin Pt layer grown on top of the heterostructure. The employed spin injection/detection scheme is sensitive to in-plane spin-polarized electrons, therefore, by detecting the ISHE signal as a function of the photon energy, we evaluate the spin polarization generated by optical transitions driven by the component of the light wave vector in the plane of the wells. In this way, we also gain insight into the electron spin-diffusion length in the MQWs. The sensitivity of the technique to in-plane spin-related properties is a powerful tool for the investigation of the in-plane component of the spin polarization in MQWs, which is otherwise commonly inaccessible
    • …
    corecore