16 research outputs found

    Tidal and rotational effects in the perturbations of hierarchical triple stellar systems. II. Eccentric systems - the case of AS Camelopardalis

    Get PDF
    We study the perturbations of a relatively close third star on a tidally distorted eccentric eclipsing binary. We consider both the observational consequences of the variations of the orbital elements and the interactions of the stellar rotation with the orbital revolution in the presence of dissipation. We concentrate mainly on the effect of a hypothetical third companion on both the real, and the observed apsidal motion period. We investigate how the observed period derived mainly from some variants of the O-C relates to the real apsidal motion period. We carried out both analytical and numerical investigations and give the time variations of the orbital elements of the binary both in the dynamical and the observational reference frames. We give the direct analytical form of an eclipsing O-C affected simultaneously by the mutual tidal forces and the gravitational interactions with a tertiary. We also integrated numerically simultaneously the orbital and rotational equations for the possible hierarchical triple stellar system AS Camelopardalis. We find that there is a significant domain of the possible hierarchical triple system configurations, where both the dynamical and the observational effects tend to measure longer apsidal advance rate than is expected theoretically. This happens when the mutual inclination of the close and the wide orbits is large, and the orbital plane of the tertiary almost coincides with the plane of the sky. We also obtain new numerical results on the interaction of the orbital evolution and stellar rotation in such triplets. The most important fact is that resonances might occur as the stellar rotational rate varies during the dissipation-driven synchronization process...Comment: 33 pages, 12 figures (reduced quality!), accepted for publication for Astronomy and Astrophysic

    Rotation-differential rotation relationships for late-type single and binary stars from Doppler imaging

    Get PDF
    From our sample of spotted late-type stars showing surface differential rotation we find that the relationship between the rotation period and the surface shear coefficient α=ΔΩ/Ωeq\alpha=\Delta\Omega/\Omega_{\rm eq} is significantly different for single stars compared to members in close binaries. Single stars follow a general trend that α\alpha increases with the rotation period. However, differential rotation of stars in close binary systems shows much weaker dependence on the rotation, if any, suggesting that in such systems tidal forces operate as a controlling mechanism of differential rotation

    Effect of Nickel Administration in vivo on the Testicular Structure in Male Mice

    Full text link
    The aim of this study was to describe the effects of nickel (NiCl2) on murine testicular structure. Experimental animals were injected intraperitoneally with a single dose of 20 mg NiCl2 per kg of body mass (group A, n = 5) and 40 mg NiCl2 per kg b. m. (group B, n = 5). The group without injection (n = 5) was the control (C). Animals were killed 48 hours after administration of nickel. The body mass of animals, the mass of testes and the testes : body mass ratio were not significantly affected. In both experimental groups a significant (p p p < 0.05 - 0.001) after nickel administration. Evaluation of the lumen diameter in the seminiferous tubule showed a significant increase in both experimental groups. The data of the perimeter of seminiferous tubules corresponded with those of the seminiferous tubule diameter. TUNEL assay detected a higher frequency of localized apoptosis in the interstitium of nickel-administered animals compared to control group. Our findings clearly suggest a negative effect of nickel on the structure as well as on the function of the seminferous epithelium at the site of spermatozoa production

    Tidal and rotational effects in the perturbations of hierarchical triple stellar systems

    No full text
    A new numerical integrator has been developed for studying the orbital and spin evolution of hierarchical triple stellar systems. The code includes equilibrium tide approximations with arbitrary direction of rotational axes. The variation of the orbital elements (e.g. the inclination of the close – eclipsing – binary) and its observational consequences according to the distorted models with different mass-distributions of the stars, as well as with and without dissipation are studied in the case of the well-known eclipsing triple system Algo

    A survey on Hungaria asteroids involved in mean motion resonances with Mars

    Get PDF
    Context. A region at the inner edge of the main asteroid belt is populated by the Hungaria asteroids. Among these objects, the Hungaria family formed as the result of a catastrophic disruption of the (434) Hungaria asteroid a few hundred million years ago. Due to the Yarkovsky effect, the fragments depending on their direction of rotation are slowly drifting inwards or outwards from the actual place of collision. Due to this slow drift, these bodies could approach the locations of the various outer-type mean-motion resonances (MMRs) with Mars. Aims. We aim to study the actual dynamical structure of Hungaria asteroids, which is primarily shaped by various outer-type MMRs with Mars. Moreover, we also seek connections between the orbital characteristics of Hungaria asteroids and their absolute magnitude. Methods. To map the resonant structure and dynamics of asteroids belonging to the Hungaria group, we used the FAst Identification of mean motion Resonances method, which can detect MMRs without the a priori knowledge of the critical argument. We also compiled stability maps of the regions around the MMRs by using the maximal variations in the asteroids’ eccentricities, semi-major axes, and inclinations. We numerically integrated the orbits of all asteroids belonging to the Hungaria group available in the JPL Horizon database together with the Solar System planets for one and ten million years. Results. Having studied the resonant structure of the Hungaria group, we find that several asteroids are involved in various MMRs with Mars. We identify both short- and long-term MMRs. Besides this, we also find a relationship between the absolute magnitude of asteroids and the MMR in which they are involved

    Study of FK Comae Berenices

    No full text
    Aims.Time-series spot modelling was used to follow the longitude changes of active regions responsible for the light variability of FK Com between 1987-2004. Methods.The photometric data are analysed in the time-series mode of a spot modelling code. A scenario of one polar and two low-latitude active regions (hereafter spots, for simplicity) depicts the light variations very well. The role of the polar spot remains unclear because photometry in general does not provide direct latitudinal surface resolution, however, Doppler imaging results of FK Com also show very high latitude or even polar spots besides the low-latitude ones. We also used a light-curve inversion method to confirm some of the results. Results.The two low-latitude spots slowly migrate around 90° and 270° longitudes with quasiperiods of 5.8 and 5.2 years. The spots prefer to stay alternately on one or the other, but on the same hemisphere of the star, with a separation of typically 90-140°. We monitored a flip-flop in the light curve of FK Comae in 1999. The two low-latitude spots, being ≈140-180° from each other during the season, gradually decreased until they both practically vanished. Shortly thereafter, two new spots appeared and started to grow. One of the new spots was near the location of the old one, whereas the other turned up 90° shifted in longitude; consequently, the activity as a whole was shifted to the other hemisphere of the star. We followed a phase jump in 1997, when the two low-latitude spots got closer in longitude and finally merged, or else one of them vanished. A new spot appeared soon, shifted by 100° in longitude, but the activity remained on the same hemisphere. Conclusions.The difference between flip-flops and phase jumps is demonstrated. The derived longitude changes of activity centres may allow us to better constrain the theoretical modelling on the time-behaviour of stellar magnetic activity
    corecore