38 research outputs found

    State of the Art in Large-Scale Soil Moisture Monitoring

    Get PDF
    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting

    The International Soil Moisture Network:Serving Earth system science for over a decade

    Get PDF
    In 2009, the International Soil Moisture Network (ISMN) was initiated as a community effort, funded by the European Space Agency, to serve as a centralised data hosting facility for globally available in situ soil moisture measurements (Dorigo et al., 2011b, a). The ISMN brings together in situ soil moisture measurements collected and freely shared by a multitude of organisations, harmonises them in terms of units and sampling rates, applies advanced quality control, and stores them in a database. Users can freely retrieve the data from this database through an online web portal (https://ismn.earth/en/, last access: 28 October 2021). Meanwhile, the ISMN has evolved into the primary in situ soil moisture reference database worldwide, as evidenced by more than 3000 active users and over 1000 scientific publications referencing the data sets provided by the network. As of July 2021, the ISMN now contains the data of 71 networks and 2842 stations located all over the globe, with a time period spanning from 1952 to the present. The number of networks and stations covered by the ISMN is still growing, and approximately 70 % of the data sets contained in the database continue to be updated on a regular or irregular basis. The main scope of this paper is to inform readers about the evolution of the ISMN over the past decade, including a description of network and data set updates and quality control procedures. A comprehensive review of the existing literature making use of ISMN data is also provided in order to identify current limitations in functionality and data usage and to shape priorities for the next decade of operations of this unique community-based data repository

    Chronology for Fluctuations in Late Pleistocene Sierra Nevada Glaciers and Lakes

    Get PDF
    Mountain glaciers, because of their small size, are usually close to equilibrium with the local climate and thus should provide a test of whether temperature oscillations in Greenland late in the last glacial period are part of global-scale climate variability or are restricted to the North Atlantic region. Correlation of cosmogenic chlorine-36 dates on Sierra Nevada moraines with a continuous radiocarbon-dated sediment record from nearby Owens Lake shows that Sierra Nevada glacial advances were associated with Heinrich events 5, 3, 2, and 1

    The CRONUS-Earth Project: A synthesis

    No full text
    Geological surface-exposure dating using cosmogenic-nuclide accumulation became a practical geochronological endeavor in 1986, when the utility of Be-10, Al-26, Cl-36, and He-3 were all demonstrated. In response to the lack of a common basis for quantifying analytical consistency and calibrating cosmogenic-nuclide production, the CRONUS-Earth Project in the U.S. was started in 2005, along with a European partner project, CRONUS-EU. The goal of the CRONUS-Earth Project was to improve the accuracy and precision of terrestrial cosmogenic nuclide dating in general, focusing especially on nuclide production rates and their variation with altitude, latitude, and time, and to attempt to move from empirically based methods to ones with a stronger basis in physics. The CRONUS-Earth Project conducted extensive intercomparisons of reference materials to attempt to quantify analytical reproducibility at the community level. We found that stated analytical uncertainties nearly always underestimate the actual degree of variability, as quantified by the over-all coefficient of variation of the intercalibration data. The average amount by which the actual coefficient of variation exceeded the analytical uncertainty was a factor of two (100%), but ranged from 15% to 300% depending on the nuclide and material. Coefficients of variation ranged from 3-4% for Be-10 to 6-8% for Cl-36, C-14, and Ne-21, to 5-11% for Al-26. Both interlaboratory bias and within-laboratory excess spread of the data played a role in increasing variability above the stated analytical uncertainties. The physical basis for cosmogenic nuclide production was investigated through numerical modeling and the measurement of energy-dependent neutron cross sections for nuclide interactions. We formulated new, physically based, scaling models, denoted LSD and LSDn, by generalizing global numerical simulations of cosmic-ray processes. The CRONUS-Earth Project identified new geological calibration sites, including one at low latitude and high elevation (Huancane, Peru), and replicated nuclide measurement at numerous laboratories. At many sites multiple nuclides were measured, providing much more confidence in the equivalence of surface-exposure ages calculated from differing nuclides. The data were interpreted using an original cosmogenic-nuclide calculator, CRONUScalc, that incorporates the new physically based scaling. The new data and model produced significantly better fits than previous efforts, but do not fully resolve apparent spatial variations in production rates. The CRONUS-Earth and CRONUS-EU Projects have provided a firm foundation for assessing the strengths and weaknesses of cosmogenic-nuclide analytical methods, adjusted the AMS standards for Be-10 and consequently revised the half-life, and have provided improved calibration data sets and interpretative tools. (C) 2015 Elsevier B.V. All rights reserved
    corecore