10 research outputs found
Cooperativity in luminescent heterobimetallic diphosphine-β-diketiminate complexes
The bis(phosphine)-functionalized β-diketiminate ligand [HC{(CH)C}{(o-[P(CH)]CH)N}](PNac) was used for the synthesis of luminescent closed-shell bimetallic complexes. The PNNP pocket combining both soft and hard donor sites can act as an orthogonal ligand scaffold to selectively coordinate two different metal ions. Deprotonation and subsequent salt elimination with [AuCl(tht)] (tht = tetrahydrothiophene) or AgI yielded the mononuclear complexes [PNacAu] (1) or [PNacAg] (2), respectively. The AuI ion is linearly coordinated by the two phosphines, forming a 12-membered metalla-macrocycle with an empty β-diketiminate pocket available for complexation of hard d metal ions (Zn, Cd, and Hg). According to this synthetic protocol, a series of heterobimetallic complexes were isolated. The complexation of the second metal ion in close spatial proximity has led to drastic changes in the photophysical properties. For further studies and understanding, quantum chemical calculations were performed
A Phosphine Functionalized β‐Diketimine Ligand for the Synthesis of Manifold Metal Complexes
One-size-fits-all: A β-diketimine ligand and its corresponding anion, forming a PNNP-type pocket, can stabilize various coordination polyhedral. A complete series of complexes forming seven different coordination polyhedral and coordination numbers ranging from 2 to 6 were realized.
A bis(diphenyl)-phosphine functionalized β-diketimine (PNac-H) was synthesized as a flexible ligand for transition metal complexes. The newly designed ligand features symmetrically placed phosphine moieties around a β-diketimine unit, forming a PNNP-type pocket. Due to the hard and soft donor atoms (N vs. P) the ligand can stabilize various coordination polyhedra. A complete series ranging from coordination numbers 2 to 6 was realized. Linear, trigonal planar, square planar, tetrahedral, square pyramidal, and octahedral coordination arrangements containing the PNac-ligand around the metal center were observed by using suitable metal sources. Hereby, PNac-H or its anion PNac− acts as mono-, bi- and tetradendate ligand. Such a broad flexibility is unusual for a rigid tetradentate system. The structural motifs were realized by treatment of PNac-H with a series of late transition metal precursors, for example, silver, gold, nickel, copper, platinum, and rhodium. The new complexes have been fully characterized by single crystal X-ray diffraction, NMR, IR, UV/Vis spectroscopy, mass spectrometry as well as elemental analysis. Additionally, selected complexes were investigated regarding their photophysical properties. Thus, PNac-H proved to be an ideal ligand platform for the selective coordination and stabilization of various metal ions in diverse polyhedra and oxidation states
A Phosphine‐ß‐diketiminate Nickel(I)‐Complex for Small Molecule Activation
A bis(diphenyl)-phosphine functionalized ß-diketimine ligand (PNac-H) was applied for the synthesis of a subvalent Ni(I) complex [PNac-Ni]. Here, the Ni(I) center is stabilized by a tetradentate PNNP-type pocket, forming a square planar coordination sphere. Subsequently, the Ni(I) complex was investigated with regard to its reactivity and the activation of small molecules. The reductive potential of Ni(I) enabled an activation of different substrate classes, such as CHX (X=Br, I), I or PhE (E=S, Se). The ligand\u27s design allows a stabilization of the reactive Ni(I) species while at the same time enabling activation processes due to a hemilabile coordination behavior and accessible axial coordination sites. The activation products have been characterized by single crystal X-ray diffraction, NMR and IR spectroscopy as well as elemental analysis
Alkali Metal Complexes of a Bis(diphenylphosphino)methane Functionalized Amidinate Ligand: Synthesis and Luminescence
A novel bis(diphenylphosphino)methane (DPPM) functionalized amidine ligand (DPPM−C(N-Dipp)H) (Dipp=2,6-diisopropylphenyl) was synthesized. Subsequent deprotonation with suitable alkali metal bases resulted in the corresponding complexes [M{DPPM−C(N-Dipp)}(Ln)] (M=Li, Na, K, Rb, Cs; L=thf, EtO). The alkali metal complexes form monomeric species in the solid state, exhibiting intramolecular metal-π-interactions. In addition, a caesium derivative [Cs{PPhCH-C(N-Dipp)}] was obtained by cleavage of a diphenylphosphino moiety, forming an unusual six-membered ring structure in the solid state. All complexes were fully characterized by single crystal X-ray diffraction, NMR spectroscopy, IR spectroscopy as well as elemental analysis. Furthermore, the photoluminescent properties of the complexes were thoroughly investigated, revealing differences in emission with regards to the respective alkali metal. Interestingly, the hexanuclear [Cs{PPhCH-C(N-Dipp)}] metallocycle exhibits a blue emission in the solid state, which is significantly red-shifted at low temperatures. The bifunctional design of the ligand, featuring orthogonal donor atoms (N vs. P) and a high steric demand, is highly promising for the construction of advanced metal and main group complexes
Human G Protein–Coupled Receptor Gpr-9-6/Cc Chemokine Receptor 9 Is Selectively Expressed on Intestinal Homing T Lymphocytes, Mucosal Lymphocytes, and Thymocytes and Is Required for Thymus-Expressed Chemokine–Mediated Chemotaxis
TECK (thymus-expressed chemokine), a recently described CC chemokine expressed in thymus and small intestine, was found to mediate chemotaxis of human G protein–coupled receptor GPR-9-6/L1.2 transfectants. This activity was blocked by anti–GPR-9-6 monoclonal antibody (mAb) 3C3. GPR-9-6 is expressed on a subset of memory α4β7high intestinal trafficking CD4 and CD8 lymphocytes. In addition, all intestinal lamina propria and intraepithelial lymphocytes express GPR-9-6. In contrast, GPR-9-6 is not displayed on cutaneous lymphocyte antigen–positive (CLA+) memory CD4 and CD8 lymphocytes, which traffic to skin inflammatory sites, or on other systemic α4β7−CLA− memory CD4/CD8 lymphocytes. The majority of thymocytes also express GPR-9-6, but natural killer cells, monocytes, eosinophils, basophils, and neutrophils are GPR-9-6 negative. Transcripts of GPR-9-6 and TECK are present in both small intestine and thymus. Importantly, the expression profile of GPR-9-6 correlates with migration to TECK of blood T lymphocytes and thymocytes. As migration of these cells is blocked by anti–GPR-9-6 mAb 3C3, we conclude that GPR-9-6 is the principal chemokine receptor for TECK. In agreement with the nomenclature rules for chemokine receptors, we propose the designation CCR-9 for GPR-9-6. The selective expression of TECK and GPR-9-6 in thymus and small intestine implies a dual role for GPR-9-6/CCR-9, both in T cell development and the mucosal immune response
A Phosphine Functionalized β‐Diketimine Ligand for the Synthesis of Manifold Metal Complexes
One-size-fits-all: A β-diketimine ligand and its corresponding anion, forming a PNNP-type pocket, can stabilize various coordination polyhedral. A complete series of complexes forming seven different coordination polyhedral and coordination numbers ranging from 2 to 6 were realized.
A bis(diphenyl)-phosphine functionalized β-diketimine (PNac-H) was synthesized as a flexible ligand for transition metal complexes. The newly designed ligand features symmetrically placed phosphine moieties around a β-diketimine unit, forming a PNNP-type pocket. Due to the hard and soft donor atoms (N vs. P) the ligand can stabilize various coordination polyhedra. A complete series ranging from coordination numbers 2 to 6 was realized. Linear, trigonal planar, square planar, tetrahedral, square pyramidal, and octahedral coordination arrangements containing the PNac-ligand around the metal center were observed by using suitable metal sources. Hereby, PNac-H or its anion PNac− acts as mono-, bi- and tetradendate ligand. Such a broad flexibility is unusual for a rigid tetradentate system. The structural motifs were realized by treatment of PNac-H with a series of late transition metal precursors, for example, silver, gold, nickel, copper, platinum, and rhodium. The new complexes have been fully characterized by single crystal X-ray diffraction, NMR, IR, UV/Vis spectroscopy, mass spectrometry as well as elemental analysis. Additionally, selected complexes were investigated regarding their photophysical properties. Thus, PNac-H proved to be an ideal ligand platform for the selective coordination and stabilization of various metal ions in diverse polyhedra and oxidation states
Chemical synthesis and biological activities of 3-alkyl pyridinium polymeric analogues of marine toxins
Two new large poly-1,3-dodecylpyridinium salts, APS12 and APS12-2 of 12.5- and 14.7-kDa size, respectively, were synthesised and tested for their pore-forming and transfection capabilities in HEK 293 and undifferentiated mouse ES cells using patch-clamp recording, Ca2+ imaging and flow cytometry. Polymerisation reactions were enhanced by microwaves, and the product sizes were controlled by altering the irradiation time. This method can also be applied to obtain polymers with variable linking chains as shown by the preparation of poly-(1,3-octylpyridinium) salt of 11.9-kDa size. Molecular weights of the final products were determined using ESIMS analysis, which also indicated the products to be amongst the largest macro-cycles ever recorded, up to a 900-membered ring. Anti-bacterial, haemolytic and anti-acetylcholinesterase activities were also reported for the two dodecyl pyridinium polymers. These biological activities are characteristic to the structurally related marine toxin, poly-APS