167 research outputs found

    Zc(3900) observation at BESIII with QSVM method

    Get PDF
    In recent years, quantum computing shows significant potentials in many areas. In this proceeding, we revisit the observation of the Zc(3900) resonance with quantum machine learning techniques, specifically quantum support vector machine (QSVM). Meanwhile, the outcomes are compared with classical support vector machine (SVM) method. With the IBM Qiskit toolkit, the QSVM method achieves a competitive signal and background classification accuracy compared to classical methods. This study emphasizes the potential of quantum machine learning in high-energy physics research, and it reveals the feasibility of applying quantum computing in future physics data analysis

    Key4hep: Progress Report on Integrations

    Get PDF
    Detector studies for future experiments rely on advanced software tools to estimate performance and optimize their design and technology choices. The Key4hep project provides a flexible turnkey solution for the full experiment life-cycle based on established community tools such as ROOT, Geant4, DD4hep, Gaudi, podio and spack. Members of the CEPC, CLIC, EIC, FCC, and ILC communities have joined to develop this framework and have merged, or are in the progress of merging, their respective software environments into the Key4hep stack. These proceedings will give an overview over the recent progress in the Key4hep project: covering the developments towards adaptation of state-of-theart tools for simulation (DD4hep, Gaussino), track and calorimeter reconstruction (ACTS, CLUE), particle flow (PandoraPFA), analysis via RDataFrame, and visualization with Phoenix, as well as tools for testing and validation

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint

    No full text
    With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE) and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU) positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m

    Cosmos : A Unified Accounting System both for the HTCondor and Slurm Clusters at IHEP

    No full text
    HTCondor was adopted to manage the High Throughput Computing (HTC) cluster at IHEP in 2016. In 2017 a Slurm cluster was set up to run High Performance Computing (HPC) jobs. To provide accounting services for these two clusters, we implemented a unified accounting system named Cosmos. Multiple workloads bring different accounting requirements. Briefly speaking, there are four types of jobs to account. First of all, 30 million single-core jobs run in the HTCondor cluster every year. Secondly, Virtual Machine (VM) jobs run in the legacy HTCondor VM cluster. Thirdly, parallel jobs run in the Slurm cluster, and some of these jobs are run on the GPU worker nodes to accelerate computing. Lastly, some selected HTC jobs are migrated from the HTCondor cluster to the Slurm cluster for research purposes. To satisfy all the mentioned requirements, Cosmos is implemented with four layers: acquisition, integration, statistics and presentation. Details about the issues and solutions of each layer will be presented in the paper. Cosmos has run in production for two years, and the status shows that it is a well-functioning system, also meets the requirements of the HTCondor and Slurm clusters
    corecore