197 research outputs found

    Calculation of wakefields in a 17 GHz beam-driven photonic band-gap accelerator structure

    Get PDF
    We present the theoretical analysis and computer simulation of the wakefields in a 17 GHz photonic band-gap (PBG) structure for accelerator applications. Using the commercial code CST Particle Studio, the fundamental accelerating mode and dipole modes are excited by passing an 18 MeV electron beam through a seven-cell traveling-wave PBG structure. The characteristics of the longitudinal and transverse wakefields, wake potential spectrum, dipole mode distribution, and their quality factors are calculated and analyzed theoretically. Unlike in conventional disk-loaded waveguide (DLW) structures, three dipole modes (TM[subscript 11]-like, TM[subscript 12]-like, and TM[subscript 13]-like) are excited in the PBG structure with comparable initial amplitudes. These modes are separated by less than 4 GHz in frequency and are damped quickly due to low radiative Q factors. Simulations verify that a PBG structure provides wakefield damping relative to a DLW structure. Simulations were done with both single-bunch excitation to determine the frequency spectrum of the wakefields and multibunch excitation to compare to wakefield measurements taken at MIT using a 17 GHz bunch train. These simulation results will guide the design of next-generation high-gradient accelerator PBG structures.United States. Dept. of Energy. High Energy Physics Division (Contract DEFG02- 91ER40648)China. Fundamental Research Funds for the Central Universities (Contract ZYGX 2010J055

    Determination and analysis of in situ spectral aerosol optical properties by a multi-instrumental approach

    Get PDF
    Continuous in situ measurements of aerosol optical properties were conducted from 29 June to 29 July 2012 in Granada (Spain) with a seven-wavelength Aethalometer, a Multi-Angle Absorption Photometer, and a three-wavelength integrating nephelometer. The aim of this work is to describe a methodology to obtain the absorption coefficients (babs) for the different Aethalometer wavelengths. In this way, data have been compensated using algorithms which best estimate the compensation factors needed. Two empirical factors are used to infer the absorption coefficients from the Aethalometer measurements: C – the parameter describing the enhancement of absorption by particles in the filter matrix due to multiple scattering of light in the filter matrix – and f, the parameter compensating for non-linear loading effects in the filter matrix. Spectral dependence of f found in this study is not very strong. Values for the campaign lie in the range from 1.15 at 370 nm to 1.11 at 950 nm. Wavelength dependence in C proves to be more important, and also more difficult to calculate. The values obtained span from 3.42 at 370 nm to 4.59 at 950 nm. Furthermore, the temporal evolution of the Ångström exponent of absorption (αabs) and the single-scattering albedo (ω0) is presented. On average αabs is around 1.1 ± 0.3, and ω0 is 0.78 ± 0.08 and 0.74 ± 0.09 at 370 and 950 nm, respectively. These are typical values for sites with a predominance of absorbing particles, and the urban measurement site in this study is such. The babs average values are of 16 ± 10 Mm−1 (at 370 nm) and 5 ± 3 Mm−1 (at 950 nm), respectively. Finally, differences between workdays and Sundays have been further analysed, obtaining higher babs and lower ω0 during the workdays than on Sundays as a consequence of the diesel traffic influence.This work was financed jointly by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund through projects CGL2011-24290, CGL2010-18782, CSD2007-00067, and CGL2012-33294; by the Valencia Autonomous Government through project PROMETEO/2010/064; the Andalusia Regional Government through projects P08-RNM-3568 and P10-RNM-6299; and by the Slovenian Ministry of Economic Development and Technology JR-KROP grant 3211-11-000519. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254 (ACTRIS). The collaboration of S. Segura in this work was possible thanks to fellowship BES-2010-031626

    Sources and contributions of wood smoke during winter in London: Assessing local and regional influences

    Get PDF
    Determining the contribution of wood smoke to air pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions have been identified as a major cause of exceedances of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2:5 and determine whether local emissions or regional contributions were the main source of biomass smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and KC were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction included contributions from secondary organic aerosols, primary biogenic and cooking sources. Source apportionment of the EC and OC was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Aethalometer-derived black carbon data were also apportioned into the contributions frombiomass burning and traffic and showed trends similar to those observed for EC. Mean wood smoke mass at the sites was estimated to range from 0.78 to 1.0 ÎŒgm-3 during the campaign in January–February 2012. Measurements on a 160m tower in London suggested a similar ratio of brown to black carbon (reflecting wood burning and traffic respectively) in regional and London air. Peaks in the levoglucosan and KC concentrations were observed to coincide with low ambient temperature, consistent with domestic heating as a major contributing local source in London. Overall, the source of biomass smoke in London was concluded to be a background regional source overlaid by contributions from local domestic burning emissions. This could have implications when considering future emission control strategies during winter and may be the focus of future work in order to better determine the contributing local sources

    Parasitic Energy Loss in the LEP Superconducting Cavities

    Get PDF
    The energy loss of bunches in the LEP superconducting (SC) cavities has been determined by measuring the closed orbit as a function of current with the beam position monitors located at finite dispersion. This method has already been used in earlier experiments to determine the distribution of the longitudinal impedance of different parts of LEP. In the present experiment the energy loss in two straight sections, containing only SC cavities, was compared with that in sections having both copper cavities and SC cavities. The results confirm the impedance calculations for the two types of cavities. The accuracy of the measurements was considerably improved by determining simultaneously the orbits of bunches with different currents. At the same time with these beam-based impedance measurements, the power dissipation was observed directly by local temperature monitors in different elements: the inter-cavity bellows inside the cryostat, the warm intermodule bellows, and Ferrite absorbers which were installed in two places to reduce the energy leaking out of cavities. These observations were correlated with the change of cryogenics power consumption, and showed an unexpected dependence of energy loss on beam energy

    Particle-bound reactive oxygen species (PB-ROS) emissions and formation pathways in residential wood smoke under different combustion and aging conditions

    Get PDF
    International audienceWood combustion emissions can induce oxida-tive stress in the human respiratory tract by reactive oxygen species (ROS) in the aerosol particles, which are emitted either directly or formed through oxidation in the atmosphere. To improve our understanding of the particle-bound ROS (PB-ROS) generation potential of wood combustion emissions, a suite of smog chamber (SC) and potential aerosol mass (PAM) chamber experiments were conducted under well-determined conditions for different combustion devices and technologies, different fuel types, operation methods, combustion regimes, combustion phases, and aging conditions. The PB-ROS content and the chemical properties of the aerosols were quantified by a novel ROS an-alyzer using the DCFH (2 ,7-dichlorofluorescin) assay and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). For all eight combustion devices tested, primary PB-ROS concentrations substantially increased upon aging. The level of primary and aged PB-ROS emission factors (EF ROS) were dominated by the combustion device (within different combustion technologies) and to a greater extent by the combustion regimes: the variability within one device was much higher than the variability of EF ROS from different devices. Aged EF ROS under bad combustion conditions were ∌ 2-80 times higher than under optimum combustion conditions. EF ROS from automatically operated combustion devices were on average 1 order of magnitude lower than those from manually operated devices, which indicates that automatic combustion devices operated at optimum conditions to achieve near-complete combustion should be employed to minimize PB-ROS emissions. The use of an elec-trostatic precipitator decreased the primary and aged ROS emissions by a factor of ∌ 1.5 which is however still within the burn-to-burn variability. The parameters controlling the PB-ROS formation in secondary organic aerosol were investigated by employing a regression model, including the fractions of the mass-to-charge ratios m/z 44 and 43 in secondary organic aerosol (SOA; f 44−SOA and f 43−SOA), the OH exposure, and the total organic aerosol mass. The regression model results of the SC and PAM chamber aging experiments indicate that the PB-ROS content in SOA seems to increase with the SOA oxidation state, which initially increases with OH exposure and decreases with the additional partitioning of semi-volatile components with lower PB-ROS content at higher OA concentrations, while further aging seems to result in a decay of PB-ROS. The results and the special data analysis methods deployed in this study could provide a model for PB-ROS analysis of further wood or other combustion studies investigating different combustion conditions and aging methods

    In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

    Get PDF
    International audiencePublished by Copernicus Publications on behalf of the European Geosciences Union. 9578 M. Beekmann et al.: Evidence for a dominant regional contribution to fine particulate matter levels Abstract. A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radio-carbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin , i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant , flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies
    • 

    corecore