23 research outputs found

    Lipoate Metabolism in Staphylococcus Aureus Pathogenesis

    Get PDF
    Lipoate is an essential cofactor of several proteins involved in cellular energy homeostasis and catabolism. Lipoate metabolism has been linked to pathogenesis in some microbial species, but its role in Staphylococcus aureus infections had not been explored. In this thesis, we tested the hypothesis that lipoate acquisition mechanisms promote S. aureus infectivity. We used a bacterial genetics approach to elucidate the biological function of the S. aureus genes involved in lipoate metabolism. Our findings allowed us to propose a model for lipoic acid de novo biosynthesis and salvage pathways in S. aureus. Moreover, we detail hitherto undescribed genetic arrangements of lipoate de novo biosynthesis and salvage genes in the S. aureus genome, which suggest a potential role for lipoate acquisition mechanisms in metabolic regulation and oxidative stress defense. Also, we have identified critical requirements for gene products involved in lipoate metabolism in murine sepsis. Our data indicate that S. aureus is capable of using bacterial and host-derived lipoate during infection in a tissue-specific manner, thereby promoting survival in diverse nutrient-restricted environments. Overall, our findings suggest that the S. aureus lipoate de novo biosynthesis and salvage pathways offer potential for the development of novel therapeutics that target key metabolic programs in S. aureu

    Transitioning from Triton X-100 to Tergitol 15-S-9:impacts on diagnostic assays using viral PCR sample solution

    Get PDF
    In 2019, the European Union banned Triton X-100, a detergent widely used in laboratory diagnostics, including the Viral PCR Sample Solution (VPSS), and urged manufacturers to find environmentally sustainable alternatives. Tergitol 15-S-9 (VPSS2) has been proposed as an alternative surfactant. This multicenter study evaluated the effectiveness of VPSS2, a Tergitol-based viral solution, as a replacement for VPSS. Our results show the equivalent performance of VPSS2 to VPSS for nucleic acid extraction and viral stability over time at different temperatures. The new VPSS formulation was also tested against external quality assurance panels and clinical samples. The results of this work support adopting this modified viral PCR sample solution to replace Triton X-100-containing viral transport solutions.</p

    Evaluation of SARS-CoV-2 antibody point of care devices in the laboratory and clinical setting

    Get PDF
    SARS-CoV-2 antibody tests have been marketed to diagnose previous SARS-CoV-2 infection and as a test of immune status. There is a lack of evidence on the performance and clinical utility of these tests. We aimed to carry out an evaluation of 14 point of care (POC) SARS-CoV-2 antibody tests. Serum from participants with previous RT-PCR (real-time polymerase chain reaction) confirmed SARS-CoV-2 infection and pre-pandemic serum controls were used to determine specificity and sensitivity of each POC device. Changes in sensitivity with increasing time from infection were determined on a cohort of study participants. Corresponding neutralising antibody status was measured to establish whether the detection of antibodies by the POC device correlated with immune status. Paired capillary and serum samples were collected to ascertain whether POC devices performed comparably on capillary samples. Sensitivity and specificity varied between the POC devices and in general did not meet the manufacturers’ reported performance characteristics, which signifies the importance of independent evaluation of these tests. The sensitivity peaked at ≄20 days following onset of symptoms, however sensitivity of 3 of the POC devices evaluated at extended time points showed that sensitivity declined with time. This was particularly marked at >140 days post infection. This is relevant if the tests are to be used for sero-prevalence studies. Neutralising antibody data showed that positive antibody results on POC devices did not necessarily confer high neutralising antibody titres, and that these POC devices cannot be used to determine immune status to the SARS-CoV-2 virus. Comparison of paired serum and capillary results showed that there was a decline in sensitivity using capillary blood. This has implications in the utility of the tests as they are designed to be used on capillary blood by the general population

    Streptococcal dTDP-L-rhamnose biosynthesis enzymes:functional characterization and lead compound identification

    Get PDF
    Biosynthesis of the nucleotide sugar precursor dTDP-L-rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP-L-rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP-L-rhamnose biosynthesis through their action as dTDP-glucose-4,6-dehydratase and dTDP-4-keto-6-deoxyglucose-3,5-epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio-layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP-rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose-dependent streptococcal pathogens as well as M. tuberculosis with an IC 50 of 120–410 ”M. Importantly, we confirmed that Ri03 inhibited dTDP-L-rhamnose formation in a concentration-dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP-L-rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP-rhamnose biosynthesis in pathogenic bacteria

    Staphylococcus aureus Tissue Infection During Sepsis Is Supported by Differential Use of Bacterial or Host-Derived Lipoic Acid

    Get PDF
    To thrive in diverse environments, bacteria must shift their metabolic output in response to nutrient bioavailability. In many bacterial species, such changes in metabolic flux depend upon lipoic acid, a cofactor required for the activity of enzyme complexes involved in glycolysis, the citric acid cycle, glycine catabolism, and branched chain fatty acid biosynthesis. The requirement of lipoic acid for metabolic enzyme activity necessitates that bacteria synthesize the cofactor and/or scavenge it from environmental sources. Although use of lipoic acid is a conserved phenomenon, the mechanisms behind its biosynthesis and salvage can differ considerably between bacterial species. Furthermore, low levels of circulating free lipoic acid in mammals underscore the importance of lipoic acid acquisition for pathogenic microbes during infection. In this study, we used a genetic approach to characterize the mechanisms of lipoic acid biosynthesis and salvage in the bacterial pathogen Staphylococcus aureus and evaluated the requirements for both pathways during murine sepsis. We determined that S. aureus lipoic acid biosynthesis and salvage genes exist in an arrangement that directly links redox stress response and acetate biosynthesis genes. In addition, we found that lipoic acid salvage is dictated by two ligases that facilitate growth and lipoylation in distinct environmental conditions in vitro, but that are fully compensatory for survival in vivo. Upon infection of mice, we found that de novo biosynthesis or salvage promotes S. aureus survival in a manner that depends upon the infectious site. In addition, when both lipoic acid biosynthesis and salvage are blocked S. aureus is rendered avirulent, implying an inability to induce lipoic acid-independent metabolic programs to promote survival. Together, our results define the major pathways of lipoic acid biosynthesis and salvage in S. aureus and support the notion that bacterial nutrient acquisition schemes are instrumental in dictating pathogen proclivity for an infectious niche.Fil: Zorzoli, Maria Azul. Loyola University Chicago; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Grayczyk, James P.. Loyola University Chicago; Estados UnidosFil: Alonzo, Francis. Loyola University Chicago; Estados Unido

    <i>Staphylococcus aureus</i> Tissue Infection During Sepsis Is Supported by Differential Use of Bacterial or Host-Derived Lipoic Acid

    No full text
    <div><p>To thrive in diverse environments, bacteria must shift their metabolic output in response to nutrient bioavailability. In many bacterial species, such changes in metabolic flux depend upon lipoic acid, a cofactor required for the activity of enzyme complexes involved in glycolysis, the citric acid cycle, glycine catabolism, and branched chain fatty acid biosynthesis. The requirement of lipoic acid for metabolic enzyme activity necessitates that bacteria synthesize the cofactor and/or scavenge it from environmental sources. Although use of lipoic acid is a conserved phenomenon, the mechanisms behind its biosynthesis and salvage can differ considerably between bacterial species. Furthermore, low levels of circulating free lipoic acid in mammals underscore the importance of lipoic acid acquisition for pathogenic microbes during infection. In this study, we used a genetic approach to characterize the mechanisms of lipoic acid biosynthesis and salvage in the bacterial pathogen <i>Staphylococcus aureus</i> and evaluated the requirements for both pathways during murine sepsis. We determined that <i>S</i>. <i>aureus</i> lipoic acid biosynthesis and salvage genes exist in an arrangement that directly links redox stress response and acetate biosynthesis genes. In addition, we found that lipoic acid salvage is dictated by two ligases that facilitate growth and lipoylation in distinct environmental conditions in vitro, but that are fully compensatory for survival in vivo. Upon infection of mice, we found that <i>de novo</i> biosynthesis or salvage promotes <i>S</i>. <i>aureus</i> survival in a manner that depends upon the infectious site. In addition, when both lipoic acid biosynthesis and salvage are blocked <i>S</i>. <i>aureus</i> is rendered avirulent, implying an inability to induce lipoic acid-independent metabolic programs to promote survival. Together, our results define the major pathways of lipoic acid biosynthesis and salvage in <i>S</i>. <i>aureus</i> and support the notion that bacterial nutrient acquisition schemes are instrumental in dictating pathogen proclivity for an infectious niche.</p></div
    corecore