145 research outputs found

    Temperoammonic stimulation depotentiates Schaffer collateral LTP via p38 MAPK downstream of adenosine A1 receptors

    Get PDF
    We previously found that low-frequency stimulation of direct temperoammonic (TA) inputs to hippocampal area CA1 depotentiates previously established long-term potentiation in the Schaffer collateral (SC) pathway through complex signaling involving dopamine, endocannabinoids, neuregulin-1, GABA, and adenosine, with adenosine being the most distal modulator identified to date. In the present studies, we examined mechanisms contributing to the effects of adenosine in hippocampal slices from male albino rats. We found that extracellular conversion of ATP to adenosine via an ectonucleotidase contributes significantly to TA-mediated SC depotentiation and the depotentiation resulting from block of adenosine transport. Adenosine-mediated SC depotentiation does not involve activation of c-Jun N-terminal protein kinase, serine phosphatases, or nitric oxide synthase, unlike homosynaptic SC depotentiation. Rather, adenosine-induced depotentiation is inhibited by specific antagonists of p38 MAPK, but not by a structural analog that does not inhibit p38. Additionally, using antagonists with relative selectivity for p38 subtypes, it appears that TA-induced SC depotentiation most likely involves p38 MAPK β. These findings have implications for understanding the role of adenosine and other extrahippocampal and intrahippocampal modulators in regulating SC synaptic function and the contributions of these modulators to the cognitive dysfunction associated with neuropsychiatric illnesses

    Neuregulin and dopamine D4 receptors contribute independently to depotentiation of Schaffer collateral LTP by temperoammonic path stimulation

    Get PDF
    AbstractPrior studies have found that dopamine (DA), acting at D4 receptors, and neuregulin (NRG), likely acting at ErbB4 receptors, are involved in a form of depotentiation of long-term potentiation (LTP) at Schaffer collateral (SC) synapses in the hippocampus. Furthermore, DA and NRG actions are intertwined in that NRG induces DA release. We previously found that low-frequency stimulation (LFS) of temperoammonic (TA) inputs to area CA1 also depotentiates previously established SC LTP through a complex signaling pathway involving endocannabinoids, GABA, adenosine, and mitogen-activated protein kinases (MAPKs), but not glutamate. In the present studies, we found that TA-induced SC depotentiation in hippocampal slices from Sprague-Dawley albino rats also involves activation of both D4 receptors and NRG-activated ErbB receptors, but that the roles of these two modulator systems are independent with D4 receptor antagonism failing to alter chemical depotentiation by NRG1β. Furthermore, a selective D4 receptor agonist was unable to depotentiate SC LTP when administered alone, suggesting that D4 receptor activation is necessary but not sufficient for TA-induced SC depotentiation. Chemical depotentiation by NRG1β was inhibited by a Pan-ErbB antagonist and by picrotoxin (PTX), an antagonist of GABA-A receptors (GABAARs), indicating that NRG likely promotes SC depotentiation via effects on GABA and interneurons. These findings have implications for understanding the role of DA and NRG in cognitive dysfunction associated with neuropsychiatric illnesses.</jats:p

    Ethanol enhances neurosteroidogenesis in hippocampal pyramidal neurons by paradoxical NMDA receptor activation

    Get PDF
    Using an antibody against 5α-reduced neurosteroids, predominantly allopregnanolone, we found that immunostaining in the CA1 region of rat hippocampal slices was confined to pyramidal neurons. This neurosteroid staining was increased following 15 min administration of 60 mm but not 20 mm ethanol, and the enhancement was blocked by finasteride and dutasteride, selective inhibitors of 5α-reductase, a key enzyme required for allopregnanolone synthesis. Consistent with a prior report indicating that N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation can promote steroid production, we observed that D-2-amino-5-phosphonovalerate (APV), a competitive NMDAR antagonist, blocked the effects of 60 mm ethanol on staining. We previously reported that 60 mm ethanol inhibits the induction of long-term potentiation (LTP), a cellular model for memory formation, in the CA1 region. In the present study, LTP inhibition by 60 mm ethanol was also overcome by both the 5α-reductase inhibitors and by APV. Furthermore, the effects of ethanol on neurosteroid production and LTP were mimicked by a low concentration of NMDA (1 μm), and the ability of NMDA to inhibit LTP and to enhance neurosteroid staining was reversed by finasteride and dutasteride, as well as by APV. These results indicate that ethanol paradoxically enhances GABAergic neurosteroid production by activation of unblocked NMDARs and that acute LTP inhibition by ethanol represents a form of NMDAR-mediated metaplasticity

    Ketamine: NMDA receptors and beyond

    Get PDF
    Human studies examining the effects of the dissociative anesthetic ketamine as a model for psychosis and as a rapidly acting antidepressant have spurred great interest in understanding ketamine's actions at molecular, cellular, and network levels. Although ketamine has unequivocal uncompetitive inhibitory effects on N-methyl-d-aspartate receptors (NMDARs) and may preferentially alter the function of NMDARs on interneurons, recent work has questioned whether block of NMDARs is critical for its mood enhancing actions. In this viewpoint, we examine the evolving literature on ketamine supporting NMDARs as important triggers for certain psychiatric effects and the possibility that the antidepressant trigger is unrelated to NMDARs. The rapidly evolving story of ketamine offers great hope for untangling and treating the biology of both depressive and psychotic illnesses

    Inhibitors of cellular stress overcome acute effects of ethanol on hippocampal plasticity and learning

    Get PDF
    Ethanol intoxication can produce marked changes in cognitive function including states in which the ability to learn and remember new information is completely disrupted. These defects likely reflect changes in the synaptic plasticity thought to underlie memory formation. We have studied mechanisms contributing to the adverse effects of ethanol on hippocampal long-term potentiation (LTP) and provided evidence that ethanol-mediated LTP inhibition involves a form of metaplasticity resulting from local metabolism of ethanol to acetaldehyde and untimely activation of N-methyl-d-aspartate receptors (NMDARs), both of which are neuronal stressors. In the present studies, we sought to understand the role of cellular stress in LTP defects, and demonstrate that ethanol\u27s effects on LTP in the CA1 hippocampal region are overcome by agents that inhibit cellular stress responses, including ISRIB, a specific inhibitor of integrated stress responses, and GW3965, an agonist that acts at liver X receptors (LXRs) and dampens cellular stress. The agents that alter LTP inhibition also prevent the adverse effects of acute ethanol on one trial inhibitory avoidance learning. Unexpectedly, we found that the LXR agonist but not ISRIB overcomes effects of ethanol on synaptic responses mediated by N-methyl-d-aspartate receptors (NMDARs). These results have implications for understanding the adverse effects of ethanol and possibly for identifying novel paths to treatments that can prevent or overcome ethanol-induced cognitive dysfunction

    Midazolam inhibits hippocampal long-term potentiation and learning through dual central and peripheral benzodiazepine receptor activation and neurosteroidogenesis

    Get PDF
    Benzodiazepines (BDZs) enhance GABA(A) receptor inhibition by direct actions on central BDZ receptors (CBRs). Although some BDZs also bind mitochondrial receptors [translocator protein (18 kDa) (TSPO)] and promote the synthesis of GABA-enhancing neurosteroids, the role of neurosteroids in the clinical effects of BDZs is unknown. In rat hippocampal slices, we compared midazolam, an anesthetic BDZ, with clonazepam, an anticonvulsant/anxiolytic BDZ that activates CBRs selectively. Midazolam, but not clonazepam, increased neurosteroid levels in CA1 pyramidal neurons without changing TSPO immunostaining. Midazolam, but not clonazepam, also augmented a form of spike inhibition after stimulation adjacent to the pyramidal cell layer and inhibited induction of long-term potentiation. These effects were prevented by finasteride, an inhibitor of neurosteroid synthesis, or 17PA [17-phenyl-(3α,5α)-androst-16-en-3-ol], a blocker of neurosteroid effects on GABA(A) receptors. Moreover, the synaptic effects were mimicked by a combination of clonazepam with FGIN (2-[2-(4-fluorophenyl)-1H-indol-3-yl]-N,N-dihexylacetamide), a selective TSPO agonist, or a combination of clonazepam with exogenous allopregnanolone. Consistent with these in vitro results, finasteride abolished the effects of midazolam on contextual fear learning when administrated 1 d before midazolam injection. Thus, dual activation of CBRs and TSPO appears to result in unique actions of clinically important BDZs. Furthermore, endogenous neurosteroids are shown to be important regulators of pyramidal neuron function and synaptic plasticity

    Neuroscience of object relations in health and disorder: A proposal for an integrative model

    Get PDF
    Recent advances in the neuroscience of episodic memory provide a framework to integrate object relations theory, a psychoanalytic model of mind development, with potential neural mechanisms. Object relations are primordial cognitive-affective units of the mind derived from survival- and safety-level experiences with caretakers during phase-sensitive periods of infancy and toddlerhood. Because these are learning experiences, their neural substrate likely involves memory, here affect-enhanced episodic memory. Inaugural object relations are encoded by the hippocampus-amygdala synaptic plasticity, and systems-consolidated by medial prefrontal cortex (mPFC). Self- and object-mental representations, extracted from these early experiences, are at first dichotomized by contradictory affects evoked by frustrating and rewarding interactions ( partial object relations ). Such affective dichotomization appears to be genetically hardwired the amygdala. Intrinsic propensity of mPFC to form schematic frameworks for episodic memories may pilot non-conscious integration of dichotomized mental representations in neonates and infants. With the emergence of working memory in toddlers, an activated self- and object-representation of a particular valence can be juxtaposed with its memorized opposites creating a balanced cognitive-affective frame (conscious integration of object relations ). Specific events of object relations are forgotten but nevertheless profoundly influence the mental future of the individual, acting (i) as implicit schema-affect templates that regulate attentional priorities, relevance, and preferential assimilation of new information based on past experience, and (ii) as basic units of experience that are, under normal circumstances, integrated as attractors or focal points for interactive self-organization of functional brain networks that underlie the mind. A failure to achieve integrated object relations is predictive of poor adult emotional and social outcomes, including personality disorder. Cognitive, cellular-, and systems-neuroscience of episodic memory appear to support key postulates of object relations theory and help elucidate neural mechanisms of psychodynamic psychotherapy. Derived through the dual prism of psychoanalysis and neuroscience, the gained insights may offer new directions to enhance mental health and improve treatment of multiple forms of psychopathology

    Treatment-resistant major depression: Rationale for NMDA receptors as targets and nitrous oxide as therapy

    Get PDF
    Major depressive disorder (MDD) remains a huge personal and societal encumbrance. Particularly burdensome is a virulent subtype of MDD, treatment resistant major depression (TMRD), which afflicts 15–30% of MDD patients. There has been recent interest in N-methyl-d-aspartate receptors (NMDARs) as targets for treatment of MDD and perhaps TMRD. To date, most pre-clinical and clinical studies have focused on ketamine, although psychotomimetic and other side effects may limit ketamine’s utility. These considerations prompted a recent promising pilot clinical trial of nitrous oxide, an NMDAR antagonist that acts through a mechanism distinct from that of ketamine, in patients with severe TRMD. In this paper, we review the clinical picture of TRMD as a subtype of MDD, the evolution of ketamine as a fast-acting antidepressant, and clinical and basic science studies supporting the possible use of nitrous oxide as a rapid antidepressant

    24(S)-Hydroxycholesterol protects the ex vivo rat retina from injury by elevated hydrostatic pressure

    Get PDF
    In the central nervous system, 24(S)-hydroxycholesterol (24(S)-HC) is an oxysterol synthesized from cholesterol by cholesterol 24-hydroxylase (CYP46A1) encoded by the cyp46a1 gene. In the present study using a rat ex vivo glaucoma model, we found that retinal 24(S)-HC synthesis is facilitated by pressure elevation. Moreover, we found that 24(S)-HC is neuroprotective against pressure mediated retinal degeneration. Quantitative real-time RT-PCR, ELISA, and immunohistochemistry revealed that elevated pressure facilitated the expression of cyp46a1 and CYP46A1. Immunohistochemically, the enhanced expression of CYP46A1 was mainly observed in retinal ganglion cells (RGC). LC-MS/MS revealed that 24(S)-HC levels increased in a pressure-dependent manner. Axonal injury and apoptotic RGC death induced by 75 mmHg high pressure was ameliorated by exogenously administered 1 μM 24(S)-HC. In contrast, voriconazole, a CYP46A1 inhibitor, was severely toxic even at normobaric pressure. Under normobaric conditions, 30 μM 24(S)-HC was required to prevent the voriconazole-mediated retinal damage. Taken together, our findings indicate that 24(S)-HC is facilitated by elevated pressure and plays a neuroprotective role under glaucomatous conditions, while voriconazole, an antifungal drug, is retinotoxic. 24(S)-HC and related compounds may serve as potential therapeutic targets for protecting glaucomatous eyes from pressure-induced injuries
    • …
    corecore