8 research outputs found
Potency and Breadth of Human Primary ZIKV Immune Sera shows that Zika Viruses Cluster Antigenically as a Single Serotype
The recent emergence of Zika virus as an important human pathogen has raised questions about the durability and breadth of Zika virus immunity following natural infection in humans. While global epidemic patterns suggest that Zika infection elicits a protective immune response that is likely to offer long-term protection against repeat infection by other Zika viruses, only one study to date has formally examined the ability of human Zika immune sera to neutralize different Zika viruses. That study was limited because it evaluated human immune sera no more than 13 weeks after Zika virus infection and tested a relatively small number of Zika viruses. In this study, we examine twelve human Zika immune sera as far as 3 years after infection and test the sera against a total of eleven Zika virus isolates. Our results confirm the earlier study and epidemic patterns that suggest Zika virus exists in nature as a single serotype, and infection with one Zika virus can be expected to elicit protective immunity against repeat infection by any Zika virus for years to decades after the first infection
Potency and breadth of human primary ZIKV immune sera shows that Zika viruses cluster antigenically as a single serotype.
Zika virus (ZIKV) emerged as a global public health threat throughout the Americas since 2014. Phylogenetically, the virus is composed of three main lineages, an African, Asian, and American lineage. The recent emergence and spread of ZIKV has raised questions regarding the breadth and potency of human primary ZIKV immune sera against antigenically diverse ZIKV. Although ZIKV is thought to compose a single antigenic serotype, in-depth evaluation of the antigenic relatedness of ZIKV across genetic variants has been limited to a relatively small series of early convalescent human immune sera (4-12 weeks) against a limited number (3) of genetic variants. Using virus neutralization assays, we characterize the potency and breadth of twelve primary ZIKV immune sera from adults infected 5 to 38 months previously against a panel of 11 ZIKV isolates from the African, Asian and American lineages. We assess the variability of neutralization potency of immune sera from these subjects and the variability of susceptibility to neutralization for each virus isolate. Overall, we found all sera neutralized all viruses at FRNT50 ranging from 1:271 to 1:4271, a 15.8-fold range, with only small differences between subject geometric mean titers (GMT) against all viruses and small differences between each ZIKV isolate and sensitivity to neutralization by all sera: when pooled, African strains were 1.3-fold more sensitive to neutralization by subject immune sera compared to pooled American strains. Finally, we subjected our data to analysis using antigenic cartography, finding that ZIKV are highly antigenically similar, with only a ~4-fold range across all antigenic distances between viruses, consistent with a single serotype
Immunogenicity of Pfizer mRNA COVID-19 Vaccination Followed by J&J Adenovirus COVID-19 Vaccination in Two Patients with Chronic Lymphocytic Leukemia
Individuals with chronic lymphocytic leukemia (CLL) have significant immune disfunction, often further disrupted by treatment. While currently available COVID-19 vaccinations are highly effective in immunocompetent individuals, they are often poorly immunogenic in CLL patients. It is important to understand the role a heterologous boost would have in patients who did not respond to the initial two-dose mRNA vaccine series. SARS-CoV-2 specific immune responses, including antibodies and memory B-cells, CD4 and CD8 T-cells were assessed prior to vaccination, as well as postinitial vaccination series and post-third dose in two subjects. One subject seroconverted, had RBD-specific memory B-cells and spike-specific CD4 T-cells while the other did not. Both subjects had a spike-specific CD8 T-cell response after the original mRNA vaccination series that was further boosted after the third dose or remained stable. The results of this study, however small, are especially promising to CLL individuals who did not seroconvert following the initial mRNA vaccination series
Infection with chikungunya virus confers heterotypic cross-neutralizing antibodies and memory B-cells against other arthritogenic alphaviruses predominantly through the B domain of the E2 glycoprotein.
Infections with Chikungunya virus, a mosquito-borne alphavirus, cause an acute febrile syndrome often followed by chronic arthritis that persists for months to years post-infection. Neutralizing antibodies are the primary immune correlate of protection elicited by infection, and the major goal of vaccinations in development. Using convalescent blood samples collected from both endemic and non-endemic human subjects at multiple timepoints following suspected or confirmed chikungunya infection, we identified antibodies with broad neutralizing properties against other alphaviruses within the Semliki Forest complex. Cross-neutralization generally did not extend to the Venezuelan Equine Encephalitis virus (VEEV) complex, although some subjects had low levels of VEEV-neutralizing antibodies. This suggests that broadly neutralizing antibodies elicited following natural infection are largely complex restricted. In addition to serology, we also performed memory B-cell analysis, finding chikungunya-specific memory B-cells in all subjects in this study as remotely as 24 years post-infection. We functionally assessed the ability of memory B-cell derived antibodies to bind to chikungunya virus, and related Mayaro virus, as well as the highly conserved B domain of the E2 glycoprotein thought to contribute to cross-reactivity between related Old-World alphaviruses. To specifically assess the role of the E2 B domain in cross-neutralization, we depleted Mayaro and Chikungunya virus E2 B domain specific antibodies from convalescent sera, finding E2B depletion significantly decreases Mayaro virus specific cross-neutralizing antibody titers with no significant effect on chikungunya virus neutralization, indicating that the E2 B domain is a key target of cross-neutralizing and potentially cross-protective neutralizing antibodies
Recommended from our members
Humoral Immune Response to mRNA COVID-19 Vaccination Among Children 5-11 in a Multisite Prospective Cohort study, September 2021-September 2022
Abstract Background The PROTECT study is a longitudinal cohort study initiated in July 2021 with weekly testing for SARS-CoV-2 in four states: Arizona, Florida, Texas, and Utah. This study aims to examine the protective effect of vaccine-elicited antibody response against post-vaccination SARS-CoV-2 infections. Methods Participants, children aged 5-11, had serum collected 14-59 days after second dose of monovalent Pfizer-BioNTech COVID-19 mRNA vaccine. Vaccine-elicited antibodies were measured by area under the curve (AUC) and endpoint titer by ELISA (RBD and S2) and surrogate neutralization (SN) assays against ancestral (WA1) and Omicron (BA.2). Results Among 79 vaccinated participants, (33 [41.7%] female; median age 8.8 [SD 1.9] years), 48 (60.8%) were from Tucson, Arizona, 64 (81.0%) were non-Hispanic white, 63 (80.8%) attended school in person, 68 (86.1%) did not have any chronic conditions, 56 (72.7%) did not take daily medications; and 47 (59.5%) were infected after vaccination. Uninfected children had higher AUCs after vaccination against WA1 (p = 0.0093) and Omicron (p = 0.018). The geometric mean SN titer above the limit of detection was 346.0 for WA1 and 39.7 for Omicron, an 8.7-fold decrease (p = <0.0001). After adjustment of covariates in the WA1-specific model, we observed a 47% reduction in the odds of a post-vaccination infection for every standard deviation increase of RBD AUC (aOR: 0.53, 95% CI: 0.29, 0.97) and a 69% reduction in the odds of infection for every three-fold increase in RBD end titer, (aOR: 0.31, 95% CI: 0.06, 1.57). Conclusion Children with higher antibody levels experienced lower incidence of post-vaccination SARS-CoV-2 infection
Recommended from our members
Hybrid immunity and SARS-CoV-2 antibodies: results of the HEROES-RECOVER prospective cohort study
There are limited data on whether hybrid immunity differs by count and order of immunity-conferring events (SARS-CoV-2 infection or COVID-19 vaccination). From a cohort of health care personnel, first responders, and other frontline workers in six US states, we examined heterogeneity of the effect of hybrid immunity on SARS-CoV-2 antibody levels.
Exposures included event-count (sum of infections and vaccine doses) and event-order, categorized into seven permutations of vaccination and/or infection. Outcome was level of serum binding antibodies against receptor binding domain (RBD) of the ancestral SARS-CoV-2 spike protein (total RBD-binding Ig), measured by enzyme-linked immunosorbent assay. Mean antibody levels were examined up to 365 days after each of the 1st-7th events.
Analysis included 5,793 participants measured from August 7, 2020 to April 15, 2023. Hybrid immunity from infection before one or two vaccine doses elicited modestly superior antibody responses after the 2nd and 3rd events (compared to infections or vaccine-doses alone). This superiority was not evident after the 4th and 5th events (additional doses). Among adults infected before vaccination, adjusted geometric mean ratios (95% CI) of anti-RBD early response (versus vaccinated-only) were 1.23 (1.14-1.33), 1.09 (1.03-1.14), 0.87 (0.81-0.94), and 0.99 (0.85-1.15) after the 2nd-5th events, respectively. Post-vaccination infections elicited superior responses: adjusted geometric mean ratios (95% CI) of anti-RBD early response (versus vaccinated-only) were: 0.93 (0.75-1.17), 1.11 (1.06-1.16), 1.17 (1.11-1.24), and 1.20 (1.07-1.34) after the 2nd-5th events, respectively.
Findings reflecting heterogeneity in antibody levels by permutations of infection and vaccination history could inform COVID-19 vaccination policy
Recommended from our members
Evaluating Immunologic and Illness Outcomes of SARS-CoV-2 Infection in Vaccinated and Unvaccinated Children Aged ≥ 5 Years, in a Multisite Longitudinal Cohort
Hybrid immunity, as a result of infection and vaccination to SARS-CoV-2, has been well studied in adults but limited evidence is available in children. We evaluated the antibody responses to primary SARS-CoV-2 infection among vaccinated and unvaccinated children aged ≥ 5 years. Methods: A longitudinal cohort study of children aged ≥ 5 was conducted during August 2021–August 2022, at sites in Arizona, Texas, Utah, and Florida. Children submitted weekly nasal swabs for PCR testing and provided sera 14–59 days after PCR-confirmed SARS-CoV-2 infection. Antibodies were measured by ELISA against the receptor-binding domain (RBD) and S2 domain of ancestral Spike (WA1), in addition to Omicron (BA.2) RBD, following infection in children, with and without prior monovalent ancestral mRNA COVID-19 vaccination. Results: Among the 257 participants aged 5 to 18 years, 166 (65%) had received at least two mRNA COVID-19 vaccine doses ≥ 14 days prior to infection. Of these, 53 occurred during Delta predominance, with 37 (70%) unvaccinated at the time of infection. The remaining 204 infections occurred during Omicron predominance, with 53 (26%) participants unvaccinated. After adjusting for weight, age, symptomatic infection, and gender, significantly higher mean RBD AUC values were observed among the vaccinated group compared to the unvaccinated group for both WA1 and Omicron (p < 0.0001). A smaller percentage of vaccinated children reported fever during illness, with 55 (33%) reporting fever compared to 44 (48%) unvaccinated children reporting fever (p = 0.021). Conclusions: Children with vaccine-induced immunity at the time of SARS-CoV-2 infection had higher antibody levels during convalescence and experienced less fever compared to unvaccinated children during infection