9 research outputs found
Duplication and positive selection among hominin-specific PRAME genes
BACKGROUND: The physiological and phenotypic differences between human and chimpanzee are largely specified by our genomic differences. We have been particularly interested in recent duplications in the human genome as examples of relatively large-scale changes to our genome. We performed an in-depth evolutionary analysis of a region of chromosome 1, which is copy number polymorphic among humans, and that contains at least 32 PRAME (Preferentially expressed antigen of melanoma) genes and pseudogenes. PRAME-like genes are expressed in the testis and in a large number of tumours, and are thought to possess roles in spermatogenesis and oogenesis. RESULTS: Using nucleotide substitution rate estimates for exons and introns, we show that two large segmental duplications, of six and seven human PRAME genes respectively, occurred in the last 3 million years. These duplicated genes are thus hominin-specific, having arisen in our genome since the divergence from chimpanzee. This cluster of PRAME genes appears to have arisen initially from a translocation approximately 95–85 million years ago. We identified multiple sites within human or mouse PRAME sequences which exhibit strong evidence of positive selection. These form a pronounced cluster on one face of the predicted PRAME protein structure. CONCLUSION: We predict that PRAME genes evolved adaptively due to strong competition between rapidly-dividing cells during spermatogenesis and oogenesis. We suggest that as PRAME gene copy number is polymorphic among individuals, positive selection of PRAME alleles may still prevail within the human population
Accelerated Evolution of the Prdm9 Speciation Gene across Diverse Metazoan Taxa
The onset of prezygotic and postzygotic barriers to gene flow between populations is a hallmark of speciation. One of the earliest postzygotic isolating barriers to arise between incipient species is the sterility of the heterogametic sex in interspecies' hybrids. Four genes that underlie hybrid sterility have been identified in animals: Odysseus, JYalpha, and Overdrive in Drosophila and Prdm9 (Meisetz) in mice. Mouse Prdm9 encodes a protein with a KRAB motif, a histone methyltransferase domain and several zinc fingers. The difference of a single zinc finger distinguishes Prdm9 alleles that cause hybrid sterility from those that do not. We find that concerted evolution and positive selection have rapidly altered the number and sequence of Prdm9 zinc fingers across 13 rodent genomes. The patterns of positive selection in Prdm9 zinc fingers imply that rapid evolution has acted on the interface between the Prdm9 protein and the DNA sequences to which it binds. Similar patterns are apparent for Prdm9 zinc fingers for diverse metazoans, including primates. Indeed, allelic variation at the DNA–binding positions of human PRDM9 zinc fingers show significant association with decreased risk of infertility. Prdm9 thus plays a role in determining male sterility both between species (mouse) and within species (human). The recurrent episodes of positive selection acting on Prdm9 suggest that the DNA sequences to which it binds must also be evolving rapidly. Our findings do not identify the nature of the underlying DNA sequences, but argue against the proposed role of Prdm9 as an essential transcription factor in mouse meiosis. We propose a hypothetical model in which incompatibilities between Prdm9-binding specificity and satellite DNAs provide the molecular basis for Prdm9-mediated hybrid sterility. We suggest that Prdm9 should be investigated as a candidate gene in other instances of hybrid sterility in metazoans
Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse
A finished clone-based assembly of the mouse genome reveals extensive recent sequence duplication during recent evolution and rodent-specific expansion of certain gene families. Newly assembled duplications contain protein-coding genes that are mostly involved in reproductive function
Meisetz and the birth of the KRAB motif
The largest family of transcription factors in mammals is of Cys2His 2 zinc finger-proteins, each with an NH 2-terminal KRAB motif. Extensive expansions of this family have occurred in separate mammalian lineages, with approximately 400 such genes known in the human genome. Despite their widespread occurrence, the evolutionary provenance of the KRAB motif is unclear since previously it has not been found outside of the tetrapod vertebrates. Here, we show that homologues of the histone methyltransferase Meisetz are present within the sea urchin (Strongylocentrotus purpuratus) genome. Sea urchin and mammalian Meisetz sequences each contain an N-terminal KRAB motif which thereby establishes an early origin of the KRAB motif prior to the divergence of echinoderm and chordate lineages. Finally, we present evidence that KRAB motifs derive from a novel family of KRI (KRAB Interior) motifs that were present in the last common ancestor of animals, plants and fungi.
Duplication and positive selection among hominin-specific <it>PRAME </it>genes
Abstract Background The physiological and phenotypic differences between human and chimpanzee are largely specified by our genomic differences. We have been particularly interested in recent duplications in the human genome as examples of relatively large-scale changes to our genome. We performed an in-depth evolutionary analysis of a region of chromosome 1, which is copy number polymorphic among humans, and that contains at least 32 PRAME (Preferentially expressed antigen of melanoma) genes and pseudogenes. PRAME-like genes are expressed in the testis and in a large number of tumours, and are thought to possess roles in spermatogenesis and oogenesis. Results Using nucleotide substitution rate estimates for exons and introns, we show that two large segmental duplications, of six and seven human PRAME genes respectively, occurred in the last 3 million years. These duplicated genes are thus hominin-specific, having arisen in our genome since the divergence from chimpanzee. This cluster of PRAME genes appears to have arisen initially from a translocation approximately 95–85 million years ago. We identified multiple sites within human or mouse PRAME sequences which exhibit strong evidence of positive selection. These form a pronounced cluster on one face of the predicted PRAME protein structure. Conclusion We predict that PRAME genes evolved adaptively due to strong competition between rapidly-dividing cells during spermatogenesis and oogenesis. We suggest that as PRAME gene copy number is polymorphic among individuals, positive selection of PRAME alleles may still prevail within the human population.</p