39 research outputs found

    Residues of veterinary medicinal products and coccidiostats in eggs – causes, control and results of surveillance program in Poland

    No full text
    The use of veterinary medicinal products in food producing animals for a variety of purposes causes that their residues may be presented in edible tissues. As a result, in concern of public health, European Union Countries establish each year monitoring plans and they control the levels of harmful substances in food of animal origin. This paper presents survey of residues of veterinary medicinal products and coccidiostats in eggs for Poland and European Union in years 2007-2010. Despite the decrease in reported non-compliant results for coccidiostats, the numbers were still higher than those for veterinary medicines. The most often determined coccidiostats were: nicarbazin, dinitrocarbanilide, salinomycin and lasalocid, and the most often reported non-compliant results for veterinary medicines were: antimicrobials, enrofloxacin and doxycycline

    Machine learning clinical decision support for interdisciplinary multimodal chronic musculoskeletal pain treatment

    Get PDF
    IntroductionChronic musculoskeletal pain is a prevalent condition impacting around 20% of people globally; resulting in patients living with pain, fatigue, restricted social and employment capacity, and reduced quality of life. Interdisciplinary multimodal pain treatment programs have been shown to provide positive outcomes by supporting patients modify their behavior and improve pain management through focusing attention on specific patient valued goals rather than fighting pain.MethodsGiven the complex nature of chronic pain there is no single clinical measure to assess outcomes from multimodal pain programs. Using Centre for Integral Rehabilitation data from 2019–2021 (n = 2,364), we developed a multidimensional machine learning framework of 13 outcome measures across 5 clinically relevant domains including activity/disability, pain, fatigue, coping and quality of life. Machine learning models for each endpoint were separately trained using the most important 30 of 55 demographic and baseline variables based on minimum redundancy maximum relevance feature selection. Five-fold cross validation identified best performing algorithms which were rerun on deidentified source data to verify prognostic accuracy.ResultsIndividual algorithm performance ranged from 0.49 to 0.65 AUC reflecting characteristic outcome variation across patients, and unbalanced training data with high positive proportions of up to 86% for some measures. As expected, no single outcome provided a reliable indicator, however the complete set of algorithms established a stratified prognostic patient profile. Patient level validation achieved consistent prognostic assessment of outcomes for 75.3% of the study group (n = 1,953). Clinician review of a sample of predicted negative patients (n = 81) independently confirmed algorithm accuracy and suggests the prognostic profile is potentially valuable for patient selection and goal setting.DiscussionThese results indicate that although no single algorithm was individually conclusive, the complete stratified profile consistently identified patient outcomes. Our predictive profile provides promising positive contribution for clinicians and patients to assist with personalized assessment and goal setting, program engagement and improved patient outcomes

    The effect of selected environmental Fusarium mycotoxins on the ovaries in the female wild boar (Sus scrofa)

    No full text
    The contamination of agricultural crops with Fusarium mycotoxins poses one of the greatest problems in food production. Wild boars live in specific habitats and are physiologically sensitive to Fusarium mycotoxins, therefore, they are an interesting model for studies investigating the effects of the discussed toxin, in particular under low-dose exposure. The objective of this study was to determine potential effects of Fusarium mycotoxins ingested with naturally contaminated food on reproductive function based on the proliferation and apoptotic indices of ovarian follicles in female wild boars. The experiment was conducted on 40 wild boars inhabiting north-eastern Poland. The effect of seasonal variations in the quantity and quality of ingested food on the concentrations of Fusarium mycotoxins and their metabolites in the blood of wild boars was analyzed. The observed differences in toxin levels were accompanied by changes in proliferation and apoptotic indices. Proliferation processes were most intense in autumn-winter and were least advanced in winter-spring. The intensity of apoptotic processes was inversely correlated with proliferation

    Table4_Machine learning clinical decision support for interdisciplinary multimodal chronic musculoskeletal pain treatment.xlsx

    No full text
    IntroductionChronic musculoskeletal pain is a prevalent condition impacting around 20% of people globally; resulting in patients living with pain, fatigue, restricted social and employment capacity, and reduced quality of life. Interdisciplinary multimodal pain treatment programs have been shown to provide positive outcomes by supporting patients modify their behavior and improve pain management through focusing attention on specific patient valued goals rather than fighting pain.MethodsGiven the complex nature of chronic pain there is no single clinical measure to assess outcomes from multimodal pain programs. Using Centre for Integral Rehabilitation data from 2019–2021 (n = 2,364), we developed a multidimensional machine learning framework of 13 outcome measures across 5 clinically relevant domains including activity/disability, pain, fatigue, coping and quality of life. Machine learning models for each endpoint were separately trained using the most important 30 of 55 demographic and baseline variables based on minimum redundancy maximum relevance feature selection. Five-fold cross validation identified best performing algorithms which were rerun on deidentified source data to verify prognostic accuracy.ResultsIndividual algorithm performance ranged from 0.49 to 0.65 AUC reflecting characteristic outcome variation across patients, and unbalanced training data with high positive proportions of up to 86% for some measures. As expected, no single outcome provided a reliable indicator, however the complete set of algorithms established a stratified prognostic patient profile. Patient level validation achieved consistent prognostic assessment of outcomes for 75.3% of the study group (n = 1,953). Clinician review of a sample of predicted negative patients (n = 81) independently confirmed algorithm accuracy and suggests the prognostic profile is potentially valuable for patient selection and goal setting.DiscussionThese results indicate that although no single algorithm was individually conclusive, the complete stratified profile consistently identified patient outcomes. Our predictive profile provides promising positive contribution for clinicians and patients to assist with personalized assessment and goal setting, program engagement and improved patient outcomes.</p

    Table3_Machine learning clinical decision support for interdisciplinary multimodal chronic musculoskeletal pain treatment.xlsx

    No full text
    IntroductionChronic musculoskeletal pain is a prevalent condition impacting around 20% of people globally; resulting in patients living with pain, fatigue, restricted social and employment capacity, and reduced quality of life. Interdisciplinary multimodal pain treatment programs have been shown to provide positive outcomes by supporting patients modify their behavior and improve pain management through focusing attention on specific patient valued goals rather than fighting pain.MethodsGiven the complex nature of chronic pain there is no single clinical measure to assess outcomes from multimodal pain programs. Using Centre for Integral Rehabilitation data from 2019–2021 (n = 2,364), we developed a multidimensional machine learning framework of 13 outcome measures across 5 clinically relevant domains including activity/disability, pain, fatigue, coping and quality of life. Machine learning models for each endpoint were separately trained using the most important 30 of 55 demographic and baseline variables based on minimum redundancy maximum relevance feature selection. Five-fold cross validation identified best performing algorithms which were rerun on deidentified source data to verify prognostic accuracy.ResultsIndividual algorithm performance ranged from 0.49 to 0.65 AUC reflecting characteristic outcome variation across patients, and unbalanced training data with high positive proportions of up to 86% for some measures. As expected, no single outcome provided a reliable indicator, however the complete set of algorithms established a stratified prognostic patient profile. Patient level validation achieved consistent prognostic assessment of outcomes for 75.3% of the study group (n = 1,953). Clinician review of a sample of predicted negative patients (n = 81) independently confirmed algorithm accuracy and suggests the prognostic profile is potentially valuable for patient selection and goal setting.DiscussionThese results indicate that although no single algorithm was individually conclusive, the complete stratified profile consistently identified patient outcomes. Our predictive profile provides promising positive contribution for clinicians and patients to assist with personalized assessment and goal setting, program engagement and improved patient outcomes.</p

    Table1_Machine learning clinical decision support for interdisciplinary multimodal chronic musculoskeletal pain treatment.docx

    No full text
    IntroductionChronic musculoskeletal pain is a prevalent condition impacting around 20% of people globally; resulting in patients living with pain, fatigue, restricted social and employment capacity, and reduced quality of life. Interdisciplinary multimodal pain treatment programs have been shown to provide positive outcomes by supporting patients modify their behavior and improve pain management through focusing attention on specific patient valued goals rather than fighting pain.MethodsGiven the complex nature of chronic pain there is no single clinical measure to assess outcomes from multimodal pain programs. Using Centre for Integral Rehabilitation data from 2019–2021 (n = 2,364), we developed a multidimensional machine learning framework of 13 outcome measures across 5 clinically relevant domains including activity/disability, pain, fatigue, coping and quality of life. Machine learning models for each endpoint were separately trained using the most important 30 of 55 demographic and baseline variables based on minimum redundancy maximum relevance feature selection. Five-fold cross validation identified best performing algorithms which were rerun on deidentified source data to verify prognostic accuracy.ResultsIndividual algorithm performance ranged from 0.49 to 0.65 AUC reflecting characteristic outcome variation across patients, and unbalanced training data with high positive proportions of up to 86% for some measures. As expected, no single outcome provided a reliable indicator, however the complete set of algorithms established a stratified prognostic patient profile. Patient level validation achieved consistent prognostic assessment of outcomes for 75.3% of the study group (n = 1,953). Clinician review of a sample of predicted negative patients (n = 81) independently confirmed algorithm accuracy and suggests the prognostic profile is potentially valuable for patient selection and goal setting.DiscussionThese results indicate that although no single algorithm was individually conclusive, the complete stratified profile consistently identified patient outcomes. Our predictive profile provides promising positive contribution for clinicians and patients to assist with personalized assessment and goal setting, program engagement and improved patient outcomes.</p
    corecore