15 research outputs found
Sub-Wavelength Resonances in Metamaterial-Based Multi-Cylinder Configurations
Sub-wavelength resonances known to exist in isolated metamaterial-based structures of circular cylindrical shape are investigated with the purpose of determining whether the individual resonances are retained when several of such resonant structures are grouped to form a new structure. To this end, structures consisting of 1, 2 and 4 sets of metamaterial-based concentric cylinders excited by an electric line current are analyzed numerically. It is demonstrated that these structures recover the resonances of the individual structures even when the cylinders are closely spaced and the new structure is thus electrically small. The investigation is conducted through a detailed analysis of the electric near-field distribution as well as the radiation resistance in those cases where the individual structures are made of simple dielectric materials in conjunction with simple, but lossy and dispersive, metamaterials
MATHEMATICAL MODELLING OF METHANE STEAM REFORMING IN A MEMBRANE REACTOR: AN ISOTHERMIC MODEL
A mathematical modelling of one-dimensional, stationary and isothermic membrane reactor for methane steam reforming was developed to compare the maximum yield for methane conversion in this reactor with that in a conventional fixed-bed reactor. Fick's first law was used to describe the mechanism of hydrogen permeation. The variables studied include: reaction temperature, hydrogen feed flow rate and membrane thickness. The results show that the membrane reactor presents a higher methane conversion yield than the conventional fixed-bed reactor
SInCohMap: Sentinel-1 multi-temporal interferometric coherence for land cover classification and mapping
International audienc
Land-cover Classification Results And Lessons Learnt From The Round Robin Consultation Within The ESA SEOM SInCohMap Project
International audienc
Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars
International audienceThe Curiosity rover has analyzed abundant light-toned fracture-fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire similar to 5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur-rich fluids may have originated in previously precipitated sulfate-rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions